
ECE 285 Winter 2024:1–14, 2024

Performance Estimation for Weakly Convex Functions

Pranav Reddy P3REDDY@UCSD.EDU

UC San Diego

Abstract
We propose applying the techinques of performance estimation, first developed by Yoel Drori and
Marc Teboulle, to the class of first-order methods of weakly-convex functions. The performance es-
timation problem aims to reduce the analysis of first-order methods to solving a nonconvex quadrat-
ically constrained quadratic program. With the relaxation and interpolation conditions proposed by
Adrien Taylor, we can almost fully reduce the problem of finding an optimal first-order algorithm
for convex functions to solving a semidefinite program. In this project we propose developing a new
set of interpolation conditions for the class of ρ-weakly convex functions and apply the techinques
of performance estimation to develop improved first-order algorithms.
Keywords: Performance estimation problem, first-order methods, nonsmooth optimization, non-
convex optimization, weakly convex, semidefinite programming.

1. Introduction

Previous conditions for weakly convex, convex, convex with bounded subgradients, smooth convex,
and strongly convex functions have been proven in Taylor et al. (2017a). Existing work, however,
does not, to our knowledge, include the class of ρ-weakly convex functions, which are of importance
in machine learning and signal processing (Davis et al. (2018)).

1.1. Related Works

In 2014, Drori and Teboulle (2012) proposed the performance estimation problem (PEP) as a
computer-assisted tool for analysis of gradient methods on smooth convex functions. By relax-
ing the infinite-dimensional problem to a finite-dimensional semidefinite program, they were able
to improve upon existing methods in an automated manner. The essential insight that analysis of
optimization methods is equivalent to finding the worst-case performance of a method on a class
of functions was greatly extended by Taylor et al. (2016, 2017a) who introduced a set of interpo-
lation conditions to make the relaxation into an exact reformulation. Although numerically chal-
lenging, Gupta et al. (2023) shows that there exist effective algorithms for solving such problems,
and Taylor et al. (2017a) shows that analytic feasible solutions can be a powerful tool in proving
convergence rates. Other works by Grimmer (2023); Shahriari-Mehr and Panahi (2024); Colla
and Hendrickx (2023) have shown applications in smooth optimization and distributed problems.
Hu et al. (2023) uses the PEP techniques on manifold optimization problems to prove a O

(
1√
n

)
convergence rate of extragradient methods. The PEP has also seen applications for inexact methods,
as shown by Kornilov et al. (2023).
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1.2. Problem Formulation

The field of optimization revolves around designing algorithms and proving their convergence prop-
erties. For example, the classical proof of the O

(
1
n

)
convergence rate of gradient descent for an

L-smooth convex function assumes certain step-sizes of the algorithm acting on a set of functions.
This is proven via a sequence of linear combinations of inequalities, eventually giving a bound on
the decrease over n iterations. In the other direction, Nesterov (2014) shows that any method where
future iterates are in the linear span of prior iterates and (sub)gradients cannot achieve better than a
O
(

1
n2

)
convergence rate. In this manner, we can see that past works have bounded the worst-case

performance and shown that these bounds are tight. Informally, this can be viewed as the primal
and dual formulations of an optimization problem, where the decision variable is not an element of
Rn but a function in a given function class, such as Fµ,L, the set of L-smooth µ-strongly convex
functions. Formally, given a methodM, and performance measure E , a class of functions F , and
some intial conditions C, we are interested in the worst performance ofM:

sup
f
E ({xi, fi, gi}i=0,1,...,N,⋆) (f-PEP)

subject to f ∈ F ,
x⋆ is optimal,

{(xi, fi, gi)}i=1,...,N are generated byM,

(x0, f0, g0) satisfy the initial conditions C.

Taylor et al. (2016) showed that given a finite set of linear-qudratic interpolation conditions, the
infinite-dimensional constraint f ∈ F can be reduced to N + 2 variables in Rd × R × Rd – a
total of (N + 2)(2d+ 1) variables. This makes the primal-dual perspective formal: feasible points
of the primal SDP establish lower bounds for convergence rates, while feasible points in the dual
SDP establish upper bounds for convergence rates. However, interpolation conditions for ρ-weakly
convex functions with M -bounded subgradients are presently unknown, although it is known that
the naive discretization is only necessary and not sufficient.

1.3. Notation

The ambient vector space is Rn, unless otherwise specified. We use N to denote the number of
iterations of a given algorithm, and ⋆ as an index to denote the optimal value or point (e.g. f⋆ or
x⋆). We denote the Euclidean 2-norm by ∥ · ∥. We will not consider other norms. We also denote
the set of L-smooth, µ-strongly convex functions by Fµ,L, where 0 ≤ µ < L ≤ ∞. Note that
if µ = 0 then we recover the set of convex (not necessarily strongly convex) functions, F0,L. If
µ < 0, then we have the set of weakly convex functions. Similarly if L =∞ we can assume that f
is not necessarily L-smooth, giving Fµ,∞. Thus, F0,∞ will denote the set of proper closed convex
functions. Given a function f : Rn → R, we denote its convex conjugate by f⋆. This overlaps with
the optimality notation, but it will be clear from context whether we are referring to conjugation or
optimality. We also denote the limiting subdifferential of f at the point x by ∂f(x). When f is
convex, this coincides with the convex subdifferential.
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2. Formulating the Performance Estimation Problem

2.1. Interpolation for Smooth Strongly Convex Functions

We reconsider (f-PEP). The central issue is that the decision variable, f ranges over an infinite
dimensional space F . For example, the set of all proper closed convex functions, denoted F0,∞,
forms a cone (not proper) in the space of all proper lower semicontinuous functions (a proof of
this can be found in Rockafellar (1970)), which is infinite-dimensional. To reduce this to a finite
dimensional constraint, we require a set of inequalities of finitely many variables which can produce
an equivalent problem.

In his PhD thesis, Taylor et al. (2016) uses convex conjugation (also called Legendre-Fenchel
conjugation) to describe a finite set of linear-quadratic inequalities which give sufficient and neces-
sary conditions for a set of points, function values, and subgradients to be interpolated by a convex
function. We describe the process in more detail in Appendix A.

Definition 1 Let {(xi, fi, gi)}i=0,1,...,N,⋆ ⊆ Rn × R × Rn be a set of points, function values, and
subgradients. Let F be a collection of subdifferentiable functions from Rn → R. We say that
{(xi, fi, gi)}i=1,...,N,⋆ is F-interpolable if there exists f ∈ F such that

f(xi) = fi,

gi ∈ ∂f(xi) ∀i = 0, 1, . . . , N, ⋆.

Thus, we have the following theorems:

Theorem 2 (Taylor et al. (2017a), Theorem 3.2) Consider a function f ∈ F0,∞. Then, f ∈ Fµ,L

if and only if f⋆ ∈ F 1
µ
, 1
L

.

Proof This follows from the fact that g ∈ ∂f(x) ⇐⇒ x ∈ ∂f⋆(g). A proof of this equivalence
can be found in Rockafellar (1970).

Theorem 3 (Taylor et al. (2016), Theorem 4) Let {(xi, fi, gi)}i=0,1,...,N,⋆ ⊆ Rn×R×Rn. Then,
{(xi, fi, gi)}i=0,1,...,N,⋆ is Fµ,L-interpolable if and only if

fi − fj − ⟨gi, xi − xj⟩ ≥
1

2(1− µ
L)

(
1

L
∥gi − gj∥2 + µ ∥xi − xj∥2 − 2

µ

L
⟨gi − gj , xi − xj⟩

)
is satisfied for all pairs of indices i, j = 0, 1 . . . , N, ⋆.

Using these theorems, we can reformulate (f-PEP) into a finite dimensional problem. We consider
a concrete example:

Example 1 Consider gradient descent with step size 1
k . That is,M is defined by

x(k+1) = x(k) − 1

k
∇f(x(k)).

We choose E as the objective gap f(x(N))− f(x⋆). Other possible choices might be distance from
optimality, ∥x(N)−x⋆∥2, or gradient norm, ∥∇f(x(N))∥2. So that we can use Theorem 3, we choose
F = Fµ,L, the set of µ-strongly convex L-smooth functions. Lastly, for our intial conditions C, we
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assume that ∥x(0) − x⋆∥ ≤ R, for some nonnegative radius R. Note that µ,L, and R are variables
decided beforehand (otherwise the cost can be arbitrarily large), and these match assumptions made
in standard texts (see Nesterov (2014)). Thus, (f-PEP) becomes

max
{(xi,fi,gi)}i=0,1,...,N,⋆

fN − f⋆

subject to fi − fj − ⟨gi, xi − xj⟩ ≥
1

2(1− µ
L)

(
1

L
∥gi − gj∥2 + µ ∥xi − xj∥2

− 2
µ

L
⟨gi − gj , xi − xj⟩

)
,

g⋆ = 0,

xk+1 = xk −
1

k + 1
gk, k = 0, 1, . . . , N − 1,

∥x0 − x⋆∥2 ≤ R2.

The equivalence of the above problem and (f-PEP) can be seen as follows. Any function f ∈ F
which is feasible to (f-PEP) must produce iterates which obey the given iterate update rule. We can
simply extract the iterates of gradient descent applied to f to generate a feasible point of the above
problem with the same cost. Now, suppose we are given a set of indices {(xi, fi, gi)}i=0,1,...,N,⋆.
If this set is feasible for the above problem, then by Theorem 3, there exists a convex function f̂
such that f̂ interpolates the points {(xi, fi, gi)}i=0,1,...,N,⋆. Therefore, gradient descent produces
the same iterates and therefore the cost is the same. Thus, the two problems are equivalent.

Remark 4 Although the above formulation looks complicated, notice that the constraints are all
quadratic or linear in the decision variables. We have (2n + 1) × (N + 2) variables, so although
large, this problem is in fact a QCQP. We will see later how to lift this to a more tractable SDP
relaxation.

2.2. SDP Formulation of the PEP

We describe the process of relaxing (f-PEP) to an SDP relaxation. First, we define two matrices
which collect information from all the past oracle calls:

1. PN =
[
x0 x1 . . . xN x⋆ g0 g1 . . . gN g⋆

]
∈ Rn×2(N+2)

2. FN =
[
f0 f1 . . . fN f⋆

]⊤ ∈ RN+2

In order to extend this problem to a QCQP, we define the Gram matrix

GN = P⊤
NPN

=



⟨x0, x0⟩ . . . ⟨x0, xN ⟩ ⟨x0, x⋆⟩ ⟨x0, g0⟩ . . . ⟨x0, gN ⟩ ⟨x0, g⋆⟩
⟨x1, x0⟩ . . . ⟨x1, xN ⟩ ⟨x1, x⋆⟩ ⟨x1, g0⟩ . . . ⟨x1, gN ⟩ ⟨x1, g⋆⟩

...
. . .

...
...

...
. . .

...
...

⟨g0, x0⟩ . . . ⟨g0, xN ⟩ ⟨g0, x⋆⟩ ⟨g0, g0⟩ . . . ⟨g0, gN ⟩ ⟨g0, g⋆⟩
...

. . .
...

...
...

. . .
...

...
⟨gN , x0⟩ . . . ⟨gN , xN ⟩ ⟨gN , x⋆⟩ ⟨gN , g0⟩ . . . ⟨gN , gN ⟩ ⟨gN , g⋆⟩
⟨g⋆, x0⟩ . . . ⟨g⋆, xN ⟩ ⟨g⋆, x⋆⟩ ⟨g⋆, g0⟩ . . . ⟨g⋆, gN ⟩ ⟨g⋆, g⋆⟩


.
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Note that GN ∈ S2(N+2)
+ , so its dimension does not depend on the dimension of the ambient vector

space, Rn. Additionally, for certain cases we can reduce the dimension further by applying first-
order optimality conditions or an affine translation, which we will specify in more detail later.

If the interpolation conditions for F correspond to a set of linear inequalities in the entries of
GN and FN , then we can redefine the constraints as linear functions of GN and FN .

Example 2 We continue Example 1 from the previous section. Let ei denote the ith standard basis
vector of RN+2. Notice that the cost fN −f⋆ can be rewritten as ⟨eN+2, FN ⟩−⟨e1, FN ⟩. Similarly,
the constraint g⋆ = 0 is equivalent to ⟨g⋆, g⋆⟩ = 0. In terms of GN this becomes e⊤N+2GNeN+2 =

⟨GN , eN+2e
⊤
N+2⟩ = 0. The constraint ∥x0 − x⋆∥2 ≤ R2 can be rewritten similarly.

Let us now consider the constraint xk+1 = xk − 1
k+1gk for k = 0, 1, . . . , N − 1. This is

equivalent to xk+1 − xk + 1
kgk = 0, which is equivalent to ∥xk+1 − xk + 1

kgk∥
2 = 0. We can

rewrite this in terms of linear combinations of the matrix PN , to get

0 = ∥xk+1 − xk +
1

k
gk∥2 = ∥PN (ek+1 − ek +

1

k
eN+2+k+1)∥2 = ⟨mk+1m

⊤
k+1, GN ⟩,

where we define mk+1 = ek+1 − ek +
1
keN+2+k+1, the vector corresponding to the linear equality

constraint of the methodM. Note that we could relax this equality to an inequality to handle an
inexact update for a fixed tolerance as well.

The interpolation constraint can be handled similarly, although it is much more involved. For
the sake of space, and since it does not add any additional insight into the process, we will leave it
out. This reformulation gives

max
FN∈RN+2

GN∈S2(N+2)

⟨eN+2 − e1, FN ⟩

subject to c⊤ijFN + ⟨Dij , GN ⟩ ≤ 0, i, j = 0, 1 . . . , N, ⋆

⟨eN+2e
⊤
N+2, GN ⟩ = 0,

⟨mk+1m
⊤
k+1, GN ⟩, k = 0, . . . , N − 1,

⟨(e0 − eN+2)(e0 − eN+2)
⊤, GN ⟩ ≤ R2

GN ⪰ 0

rank(GN ) ≤ n.

The rank constraint rank(GN ) ≤ n ensures that by a Cholesky factorization, we can always recover
the matrix PN and obtain a set of Fµ,L-interpolable points {(xi, fi, gi)}i=0,1,...,N,⋆, so the SDP and
QCQP are equivalent. By dropping the rank constraint, we find an SDP relaxation of (f-PEP).

Remark 5 An interesting fact is that by an affine translation, we can assume that x⋆ = 0 and
f⋆ = 0. By the first-order conditions of convex optimization, we also get that g⋆ = 0. This could
allow us to eliminate 2 rows of GN and an entry of FN , resulting in eliminating 2(N + 2) + 1
variables.

We will now generalize this example to arbitrary classes of functions, methods, and initial condi-
tions.
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Definition 6 Let F be a class of functions, M an iterative first-order method, C a set of initial
conditions, and E a performance measure depending only on the first-order oracle calls. We say
that any of these are Gram representable if it has a set of interpolation conditions which can be
represented as linear function of the Gram matrix GN .

Remark 7 This definition is actually more restrictive than necessary, see Taylor et al. (2017a).

We now define the generalized form of Example 2.

Definition 8 Let F be a class of functions, M an iterative first-order method, C a set of initial
conditions, and E a performance measure depending only on the first-order oracle calls. Suppose
that all of these are Gram representable. Then we can reformulate (f-PEP) as

max
FN∈RN+2

GN∈S2(N+2)

⟨e, FN ⟩+ ⟨E,GN ⟩ (SDP-PEP)

subject to aij + ⟨Cij , FN ⟩+ ⟨Dij , GN ⟩ ≤ 0, i, j = 0, 1 . . . , N, ⋆

bk + ⟨mk, FN ⟩+ ⟨Mk, GN ⟩ ≤ 0, k = 1, . . . , N,

d+ ⟨c, FN ⟩+ ⟨C,GN ⟩ ≤ 0

GN ⪰ 0.

The first constraint corresponds to the interpolation conditions for F . The second is the reformu-
lation of the method M. We allow for inequalties to generalize to inexact updates, the kth such
constraint might represent the tolerance at step k. The third constraint represents the intial condi-
tions, C. Finally, we drop the rank constraint seen in Example 2.

Remark 9 Dropping the rank constraint does not change much in practice. Indeed, simply assum-
ing that the dimension, n, of the ambient space, Rn, is larger than 2(N + 2) guarantees that the
rank constraint is trivial. In the setting of large-scale optimization, the number of iterations may be
far smaller than the dimension of the space, so the relaxation is exact in this context.

2.3. Weakly Convex Functions

Definition 10 (Davis and Drusvyatskiy (2018), Lemma 2.1) A function φ : Rn → R is called ρ-
weakly convex if φ(x) + ρ

2∥x∥
2 is convex. Equivalently, for all x, y ∈ Rn with v ∈ ∂φ(x) and

w ∈ ∂φ(y),

1. The approximate secant inequality

φ(λx+ (1− λ)x) ≤ λφ(x) + (1− λ)φ(x) +
ρλ(1− λ)

2
∥x− y∥2

for all λ ∈ [0, 1].

2. The subgradient inequality holds

φ(y) ≥ φ(x) + ⟨v, y − x⟩ − ρ

2
∥x− y∥2.
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3. The subdifferential map is hypomontone:

⟨v − w, x− y⟩ ≥ −ρ∥x− y∥2.

Another proof of these results can be found in (Rockafellar, 1998, Theorem 12.17).

Weakly convex functions have various nice properties, which can be found in Davis and Drusvy-
atskiy (2018). A set of interpolation conditions for weakly convex functions are known, and the
following theorem characterizes them.

Theorem 11 (Taylor et al. (2017a), Theorem 3.10) The set {(xi, fi, gi)}i=0,1,...,N,⋆ ⊆ Rn ×R×
Rn is F−ρ,L-interpolable if and only if

fi +
ρ

2
∥xi∥2 ≥ fj +

ρ

2
∥xj∥2 + ⟨gj + ρxj , xi − xj⟩+

1

2L
∥gi + ρxi − gj − ρxj∥2

is satisfied for all pairs of indices i, j = 0, 1 . . . , N, ⋆.
Proof Note that {(xi, fi, gi)}i=0,1,...,N,⋆ being ρ-weakly convex interpolable is equivalent to the set{
(xi, fi +

ρ
2∥xi∥

2, gi + ρxi)
}
i=0,1,...,N,⋆

being F0,L+ρ-interpolable. An application of Theorem 3
completes the proof.

However, in practice we do not usually consider the L-smooth case. Instead we consider an alternate
class of functions:

Definition 12 Let f : Rn → R be a subdifferentiable function. We say that f has M -bounded
subgradients if for all x, if g ∈ ∂f(x) then ∥g∥ ≤M .

The class of ρ-weakly convex functions with M -bounded subgradients appear in Davis and Drusvy-
atskiy (2018) and Nemirovski et al. (2009). Similar conditions appear in Grimmer (2018), and Zhu
et al. (2023) provides a survey of such subgradient bounds and their associated convergence rates.
However, as of writing, interpolation conditions for the class of ρ-weakly convex functions are un-
known, although Rubbens et al. (2023) states they have (as of writing) an unpublished result on this
topic.

2.4. Interpolating Weakly Convex Functions with Bounded Subgradients

Definition 10 provides some candidates to examine for a set of interpolation conditions. How-
ever, Rubbens et al. (2023) state that the subgradient inequality in Definition 10, together with the
constraint ∥gi∥2 ≤ M2, are necessary but not sufficient. Therefore, if we use those two constraints
in (SDP-PEP), we will obtain a relaxation which includes all ρ-weakly-convex functions with M -
bounded subgradients, but could potentially be a strictly larger class of functions. An overview of
numerical results using this method can be found in Section 3.

To interpolate convex functions, Taylor et al. (2016) used convex conjugation. However, the
convex conjugate of a ρ-weakly convex function may not be proper. For example, consider φ(x) =
−ρ

2∥x∥
2. The convex conjugate can be computed as f⋆(y) = supx

{
⟨y, x⟩ −

(
−ρ

2∥x∥
2
)}

=∞ for
all y. Thus, the conjugate function does not provide anything useful in this context.

The proof of Theorem 11 bypasses this restriction by considering the convex function f(x) :=
φ(x) + ρ

2∥x∥
2. However, notice that if g ∈ ∂φ(x), then g + ρx ∈ ∂f(x), and the norm ∥g + ρx∥2

is unbounded as a function of x, so the property of bounded subgradients is lost.
To repair this, we can consider the generalized conjugate from Rockafellar (1998).
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Definition 13 (Rockafellar (1998), Chapter 11, Section L) Let Φ: Rn×Rn → R be any function.
For any function f : Rn → R, the Φ-conjugate of f is defined as

fΦ(y) = sup
x∈Rn

{Φ(x, y)− f(x)} .

Similarly, the Φ-biconjugate of f is

fΦΦ(x) = sup
y∈Rn

{
Φ(x, y)− fΦ(x)

}
.

The goal is to use the generalized conjugate function Φ(x, y) = ⟨x, y⟩− ρ
2∥x∥

2 to act as the convex
conjugate for the class of ρ-weakly convex functions. However, the critical step is to analyze how
the subgradient is transformed under conjugation, but as of writing I have not yet fully analyzed
this.

3. Numerical Experiments

As previously stated, exact interpolation conditions for the class of ρ-weakly convex functions with
M -bounded subgradients is unknown. However, a set of necessary conditions is given in Defini-
tion 10, together with the constraint ∥gi∥2 ≤ M2. We consider the subgradient update methods
given in Davis et al. (2018).

Algorithm 1: Subgradient Method
Data: x(0) ∈ Rn, ε > 0
Result: x(N) ∈ Rn

while k ≥ 0 do
Choose g(k) ∈ ∂φ(x)
if ∥g(k)∥ ≤ ε then

Stop, exit algorithm
else

x(k+1) ← x(k) − c(k)

∥g(k)∥g
(k)

end
end

The step sizes c(k) are predetermined, and we consider a few different choices:

1. Polyak stepsize: c(k) = φ(x(k))−φ(x⋆)

∥g(k)∥ ,

2. Constant stepsize: c(k) = α, where α is a constant,

3. Geometric stepsize: c(k) = α · qk, where α is a constant and q ∈ (0, 1).

Note that this is computable only if we know the optimal value in advance. Thus, this stepsize
scheme is only of theoretical interest, although it can be used for estimating better stepsizes.
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Figure 1: Comparison of Different Step
Sizes on Weakly Convex Func-
tions
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Figure 2: Comparison of Weakly Convex
Functions and L-smooth Convex
Functions

3.1.

The problem (SDP-PEP) works in a general form, but as subtely noted in Example 2, the constraint
xk+1 = xk − 1

kgk defines an implicit rank constraint on our problem. Since the some columns
of the matrix are in the span of the others, this is essentially requiring the rank of the matrix GN

to be below a certain threshold. To alleviate this, we redefine the variables x1, . . . , xN in terms
of the gradient updates to get xk = x0 −

∑k
i=1

1
kgk−1. This allows us to change our variables

into constraints. Note that this applies to any method where the current iterate is in the span of the
gradients. I ran the numerical experiments on a 2020 MacBook Pro using YALMIP with MOSEK,
and set ρ = M = 1 and L = 2 for the L-smooth convex comparison setup. I ran the SDP with
N = 1, 2, . . . , 30, since anything larger incurred significant time cost. The code can be found in
Appendix B.

4. Conclusions

We can see that although the weakly convex functions do not perform as well as the L-smooth
convex functions, the non-summable decaying step sizes perform the best on the class of functions
which satisfy the necessary conditions for ρ-weakly convex functions with M -bounded subgra-
dients. Future work must focus on rigorously justifying the use of interpolation conditions, and
currently the generalized conjugate of Rockafellar appears to be the best candidate. On the numeri-
cal side, it is worth investigating the ways in which the solve time can be sped up, since any N > 50
causes significant issues for the solver. The main issue appears to be the number of constraints,
which grow at a rate of O(N2), due to needing an interpolation constraint for each pair of indices.
Grimmer (2023) notes that many primal optimal solutions have rank one, so methods which can
take advantage of this observed rank deficiency, such as the spectral bundle method of Liao et al.
(2023) may be worth investigating as a potential alternative to interior-point methods.
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Appendix A. Convex Interpolation

A.1. Convex Conjugation

The convex conjugate of f : Rn → R is defined as

f⋆(y) = sup
x
{⟨y, x⟩ − f(x)}.

It has a number of useful properties.

Theorem 14 Let f : Rn → R be any function, and let f⋆(y) be its convex conjugate. Then,

1. f⋆ is convex and closed, even when f is not.

2. Fenchel’s Inequality: f(x)+ f⋆(x⋆) ≥ ⟨x, x⋆⟩, and equality holds if and only if x⋆ ∈ ∂f(x).

3. f⋆⋆ ≤ f , and if f is a proper closed convex function, then f⋆⋆ = f .

4. For a proper closed convex function f , x⋆ ∈ ∂f(x) if and only if x ∈ ∂f⋆(x⋆).

Proof We will use an equivalent definition of convexity (Rockafellar (1970)). Define the epigraph of
f as epi f := {(x, y) : f(x) ≤ y}. Then, f is a convex function if and only if epi f is a convex set.
The proof of 1 follows from realizing that the mapping x⋆ 7→ ⟨x, x⋆⟩ − f(x) is affine, and therefore
convex, so its epigraph is convex, and additionally it is also closed. Taking the intersection of all
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epigraphs over all values of x means we take the intersection of convex and closed sets, which is
also convex and closed, and this is precisely the epigraph of f⋆.

The proof of 2 follows from the definition:

f⋆(x⋆) = sup
x
{⟨x⋆, x⟩ − f(x)}

≥ ⟨x⋆, x⟩ − f(x)

⇐⇒
f(x) + f⋆(x⋆) ≥ ⟨x⋆, x⟩

For the case of equality, we have that

x⋆ ∈ ∂f(x) ⇐⇒ f(z) ≥ f(x) + ⟨x⋆, z − x⟩ ∀z
⇐⇒ f(z)− ⟨x⋆, z⟩ ≥ f(x)− ⟨x⋆, x⟩
⇐⇒ ⟨x⋆, z⟩ − f(z) ≤ ⟨x⋆, x⟩ − f(x)

⇐⇒ sup
z∈dom(f)

{⟨x⋆, z⟩ − f(z)} ≤ ⟨x⋆, x⟩ − f(x)

⇐⇒ ⟨x⋆, x⟩ − f(x) = f⋆(x⋆)

⇐⇒ ⟨x⋆, x⟩ = f(x) + f⋆(x⋆).

For the proof of 3, we will first show that f⋆⋆(x) ≤ f(x).

f∗∗(x) = sup
z
{x⊤z − f∗(z)}

= sup
z
{x⊤z − sup

y
{z⊤y − f(y)}}

= sup
z
{x⊤z + inf

y
{f(y)− z⊤y}}

= sup
z

inf
y
{x⊤z + f(y)− z⊤y}

≤ inf
y
sup
z
{z⊤(x− y) + f(y)}

≤ f(x)

Now suppose f is proper, closed, and convex. Then, its epigraph is nonempty, closed, and convex.
We know from the previous results that f⋆⋆ is also closed and convex, and since f⋆⋆ ≤ f , it must
also be proper. Therefore, its epigraph is also nonempty, closed, and convex. We want to show that
f⋆⋆ ≥ f as well. Suppose that f⋆⋆(x) < f(x) at some point x. Then, by the hyperplane separation
theorem, we can strictly separate epi f from (x, f⋆⋆(x)), and this hyperplane cannot be vertical.
This gives, for some ε > 0 and vector y,

f(z)− ε ≥ ⟨y, z − x⟩+ f⋆⋆(x) ∀ z
⟨y, x⟩ − ε ≥ ⟨y, z⟩ − f(z) + f⋆⋆(x)

⟨y, x⟩ − ε ≥ f⋆(y) + f⋆⋆(x)

⟨y, x⟩ > f⋆(y) + f⋆⋆(x)

However, this contradicts Fenchel’s inequality, so therefore f⋆⋆ = f .
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A.2. Interpolation Conditions

We can use this to begin the proof of the interpolation results.

Theorem 15 Let f be a proper closed convex function. Then, f is L-smooth (f ∈ F0,L) if and only
if f⋆ is 1

L -strongly convex (f ∈ F 1
L
,∞).

Proof We use the following characterizations of L-smooth and µ-strongly convex functions.

f ∈ F0,L ⇐⇒

1

L
∥∇f(y)−∇f(x)∥2 ≤ ⟨∇f(y)−∇f(x), y − x⟩ ≤ L∥x− y∥2

f ∈ Fµ,∞ ⇐⇒

µ∥x− y∥2 ≤ ⟨∇f(y)−∇f(x), y − x⟩ ≤ 1

µ
∥∇f(y)−∇f(x)∥2

The result then follows from realizing that∇f∗(∇f(x)) = x.

We need one last lemma to transform µ-strongly convex functions to general convex functions.

Lemma 16 Consider f ∈ Fµ,L with 0 ≤ µ < L ≤ ∞. Define ϕ(x) := f(x) − µ
2∥x − x⋆∥1.

Then, ϕ ∈ F0,L−µ if and only if f ∈ Fµ,L. The mapping of f 7→ f − µ
2∥ · ∥

2 is known as minimal
curvature subtraction.
Proof Suppose f ∈ Fµ,L. Then,

⟨∇ϕ(x)−∇ϕ(y), x− y⟩ = ⟨∇f(x)−∇f(y)− µ(x− y), x− y⟩
= ⟨∇f(x)−∇f(y), x− y⟩ − µ∥x− y∥2

≤ L∥x− y∥2 − µ∥x− y∥2

≤ (L− µ)∥x− y∥2.

We use the inequality ⟨∇f(x)−∇f(y), x− y⟩ ≤ L∥x− y∥2 if and only if f ∈ F0,L (assuming f
is C1). A proof of this can be found in Nesterov (2014).

Suppose ϕ ∈ F0,L−µ. Then, f(x) = ϕ(x)+ µ
2∥x−x⋆∥2. By convexity and (L−µ)-smoothness:

⟨∇f(x)−∇f(y), x− y⟩ = ⟨∇ϕ(x)−∇ϕ(y) + µ(x− y), x− y⟩
= ⟨∇ϕ(x)−∇ϕ(y), x− y⟩+ µ∥x− y∥2

≤ (L− µ)∥x− y∥2 + µ∥x− y∥2

= L∥x− y∥2.

This proves L-smoothness. For strong convexity, we have that

0 ≤ ⟨∇ϕ(x)−∇ϕ(y), x− y⟩
= ⟨∇f(x)−∇f(y), x− y⟩ − µ∥x− y∥2

µ∥x− y∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩.

This inequality is an equivalent definition of strong convexity for C1 functions (Nesterov (2014)).
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Now, we can state the main result of Taylor et al. (2016):

Theorem 17 A set {(xi, fi, gi)}i∈I is Fµ,L-interpolable if and only if

fi − fj − ⟨gj , xi − xj⟩ ≥
1

2
(
1− µ

L

)( 1

L
∥gi − gj∥2

+ µ∥xi − xj∥2 − 2
µ

L
⟨gj − gi, xj − xi⟩

)

Proof The full proof is very long and doesn’t add anything new. We focus on the main ideas.

1. Show that {(xi, fi, gi)}i∈I isFµ,L-interpolable if and only if {(gi, fi, xi)}i∈I isF 1
L
, 1
µ

-interpolable.

2. Then, starting with a µ-strongly convex, L-smooth function f , we use minimal curvature
subtraction to obtain an (L− µ)-smooth function f̃ .

3. Then, we take f̃ and map it to its conjugate f̃⋆ to obtain a 1
L−µ -strongly convex function.

4. We again use minimal curvature subtraction to obtain a convex h⋆, which we can use our
nonsmooth convex interpolation result for.

Appendix B. Numerical Experiments

The code can be found at
https://github.com/pranavnreddy/ECE285Project.

We chose to use a constant stepsize ck = 1, a geometric step size ck = 100 · 0.8k, and a non-
summable decaying stepsize ck = 1

k . For the convex L-smooth function we chose to use the best
performing stepsize, the non-summable decaying ck = 1

k .
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