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Goals

1. Examine SDP relaxations of QCQPs closely

2. Analyze when the relaxation is exact
▶ Exactness with noisy parameters

3. (If time), examine applications in statistical estimation
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Setting

Many problems in statistics and engineering are of the form

q⋆ = minimize
x ∈ Rn x⊤Qx

subject to qi(x) = 0, i = 1, 2, . . . , k (Q)

We define g : Rn × Rm → Rk as the corresponding system of
quadratic polynomials. In general, this problem is not convex, since
the set of feasible points, X , is not convex, and if Q is not positive
semidefinite, the cost is not convex.
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Dual of a QCQP

However, let’s look at the dual of (Q) more explicitly. We can
rewrite any quadratic constaint as

qi(x) = x⊤Aix + 2b⊤
i x + ci =

(
x
1

)⊤(
Ai bi
b⊤

i ci

)(
x
1

)

=
(

x
1

)⊤

Qi

(
x
1

)

=
〈[

xx⊤ x
x⊤ 1

]
, Qi

〉
.
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This immediately gives a reformulation of our original problem:

p⋆ = minimize
x ∈ Rn, X ∈ Sn

〈[
X x
x⊤ 1

]
, Q
〉

subject to
〈[

X x
x⊤ 1

]
, Qi

〉
= 0, i = 1, 2, . . . , k,[

X x
x⊤ 1

]
⪰ 0 (P)

Note that we dropped the rank constraint to obtain an SDP
relaxation. This is known as Shor’s relaxation. Note that this also
let’s us assume that all quadratics are homogeneous.
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Let us now examine the dual of the problem, which is

d⋆ = maximize
λ ∈ Rk

⟨λ, c⟩

subject to Q +
k∑

i=1
λiQi ⪰ 0 (D)

A natural question is: when do we have zero duality gap? Note
that we already have

q⋆ ≥ p⋆ ≥ d⋆

by the relaxation and weak duality.
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Zero Duality Gap

Suppose we have a homogeneous QCQP (bi = 0 for all i) and that
ci ̸= 0 for some i . Then, define H(λ) = Q +

∑k
i=1 λiQi . Note that

this is 1
2∇xxL(x , λ), half the Hessian of the Lagrangian. We say λ

is a Lagrange multiplier of x if the following equivalent
conditions hold:

∇xL(x , λ) = 0
H(λ)x = 0.

Let Λ(x) be the set of Lagrange multipliers at x . Then Λ(x) is an
affine set, and we will say x is a critical point of (Q) if Λ(x) is
nonempty and x is feasible.
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Strong Duality

Theorem ([1, Lemma 2.1])

Suppose that there exists x ∈ Rn, λ ∈ Rk such that
1. qi(x) = 0 for all i (primal feasibility)
2. H(λ) ⪰ 0 (dual feasibility)
3. H(λ)x = 0 (λ is a Lagrange multiplier).

Then x is optimal for (Q), λ is optimal for (D), and q⋆ = d⋆.
Moreover, if rank(H(λ)) = n − 1, then xx⊤ is the unique minimizer
of (P) and x is the unique minimizer of (Q) (up to sign).
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Proof

Proof.
Since H(λ)x = 0 and x is feasible,

0 = x⊤H(λ)x = x⊤Qx +
k∑

i=1
λix⊤Aix = x⊤Qx −

k∑
i=1

λici

so therefore q⋆ = d⋆.
Suppose S is an optimal solution of (P). Then, S ̸= 0 if at least
one ci is nonzero. By complementary slackness, ⟨H(λ), S⟩ = 0,
and since both are PSD, rank(H(λ)) + rank(S) ≤ n. If
rank(H(λ)) = n − 1, then rank(S) = 1. This also implies that all
solutions S have rank 1, so there cannot be another distinct
solution. Otherwise, their convex hull would have a solution of
rank 2. Therefore, we can recover a solution for (Q), up to a
choice of sign.
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We want to study what happens when we perturb the problem
data slightly. Most importantly, will exactness and/or strong
duality be preserved? For simplicity, suppose we have Θ ⊆ Rd and
continuous functions (Qi(θ), ci(θ)) : Θ → Sn

+ × R. Thus, we have

q⋆(θ) = minimize
x ∈ Rn x⊤Q(θ)x

subject to qi(x , θ) = 0, i = 1, 2, . . . , k (Qθ)

p⋆(θ) = minimize
X ∈ Sn ⟨X , Q(θ)⟩

subject to ⟨X , Qi(θ)⟩ = ci(θ), i = 1, 2, . . . , k,

X ⪰ 0 (Pθ)

d⋆(θ) = maximize
λ ∈ Rk

⟨λ, c(θ)⟩

subject to Q(θ) +
k∑

i=1
λiQi(θ) ⪰ 0 (Dθ)
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SDP Stability

Definition
We say that (Qθ) is SDP stable near θ if there exists ε > 0 such
that q⋆(θ) = p⋆(θ) = d⋆(θ) when ∥θ − θ∥ < ε.

We will need some additional regularity assumptions to show
stability.
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Regularity Assumptions

Definition
Given g : Rn → Rk , let X = {x ∈ Rn : g(x) = 0}. The Abadie
constraint qualification (ACQX (x)) holds at x ∈ X if X is a
smooth manifold near x and
rank(Dg(x)) = codim(X ) =: n − dim(X ), where Dg is the
Jacobian matrix of g .

▶ This intuitively provides some regularity of g .
▶ The smoothness and rank conditions suggests that g does not

define a degenerate feasible region.
▶ ACQX (x) guarantees the existence of Lagrange multipliers at

x , that Λ(x) ̸= ∅.
▶ In the case where g is a polynomial mapping, ACQX (x) holds

if and only if rank(Dg(x)) = codim(X ).
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Robustness of Perturbations

For the following theorems, we assume that all parameters other
than the cost are constant with respect to θ.

Theorem
Consider (Qθ). Suppose Q(θ) is continuous, and c ̸= 0. Suppose θ
is such that Q(θ) ⪰ 0 has corank 1, and q⋆(θ) = 0. If ACQX (x)
holds, then (Qθ) is SDP stable near θ and (Pθ) shares its
minimizer.

Proving this result requires some preliminary results that are of
their own interest.
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Lagrange Multiplier Mapping

Definition

The Lagrange Multiplier Mapping is L : Θ ⇒ Rn × Rk where

L(θ) = {(x , λ) : x is feasible for (Qθ), λ ∈ Λθ(x)} .

The continuity properties of L are important in the proof of SDP
stability.

Definition
We say L is weakly continuous at ℓ = (x , λ) ∈ L(θ) if there
exists ℓθ ∈ L(θ) such that ℓθ → ℓ as θ → θ.
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Applying Weak Continuity

Theorem
Suppose θ is such that (Qθ) has zero duality gap, and let (x , λ) is
a primal-dual optimal pair for (Qθ). If Hθ(λ) has corank 1 and L is
weakly continuous at (x , λ), then (Qθ) is SDP stable at θ and
(Pθ) shares its minimizer.

Proof.
By weak continuity, there exists (xθ, λθ) such that xθ is feasible,
λθ ∈ Λθ(xθ), and (xθ, λθ) → (x , λ) as θ → θ. Then, it follows that
Hθ(λθ) → Hθ(λ), since we assume that the constraints and cost
vary continuously with θ.
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Proof.
By weak continuity, there exists (xθ, λθ) such that xθ is feasible,
λθ ∈ Λθ(xθ), and (xθ, λθ) → (x , λ) as θ → θ. Then, it follows that
Hθ(λθ) → Hθ(λ), since we assume that the constraints and cost
vary continuously with θ.
Since Hθ(λθ) ⪰ 0, and Hθ(λ) has corank 1, Hθ(λ) has n − 1
positive eigenvalues. Because Hθ(λθ)xθ = 0, Hθ(λθ) has at most
n − 1 positive eigenvalues. By continuity of eigenvalues, as θ → θ,
Hθ(λθ) has n − 1 positive eigenvalues. Applying Theorem 1, we
complete the proof.

▶ We have shown that given the weak continuity, we have SDP
stability.

▶ We need to analyze when weak continuity holds.
▶ We are want to know how q⋆(θ) behaves as θ varies.
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Lemma

Let F : S × θ → R be a continuous function with S ⊆ Rn compact.
Then θ 7→ minx∈S F (x , θ) is continuous.

Sketch of Proof.
The essential fact is that F (·, θ) is uniformly continuous since S is
compact.

▶ We will use this fact to prove the local continuity of the
optimal solution.
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Continuity of Primal Optimal Solution

Theorem

Let x⋆
θ be an optimal solution of (Qθ). Then x⋆

θ → x⋆
θ

as θ → θ.

Proof.
Let x = (x1, y) where y = (x2, . . . , xn) ∈ Rn−1. Since at least one
ci ̸= 0, let us assume c1 ̸= 0. Because Fθ has corank 1, we may
assume after a change of coordinates that x = (1, 0) and the cost
is ∥y∥2

2. Our first goal will be to bound the size of the feasible set.
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Proof Cont.

Proof.
Note that since we assumed homogeneous polynomials, we have
for any feasible x

q1(x) = x⊤Q1x − 1 = 0.

For x = (1, 0), this means that the top left entry of Q1 must be 1.
Thus, we may write

q1(x) = (x1 − v⊤y)2 − (y⊤Vy + 1) = 0,

so x1 = v⊤y ±
√

y⊤Vy + 1. Thus,

|x1| ≤ (∥v∥ + ∥V ∥1/2
2 )∥y∥ + 1 ≤ (1 + ∥v∥ + ∥V ∥1/2

2 )︸ ︷︷ ︸
α

(∥y∥ + 1)
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Proof Cont.

Assume θ is close enough to θ so that ∥Qθ − Qθ∥2 < 1
8α2 . Now

suppose that x = (x1, y) has ∥y∥ > 1 and is feasible. Then,

qθ(x) ≥ qθ(x) − |qθ(x) − qθ(x)| ≥ ∥y∥2 − ∥Qθ − Qθ∥2∥x∥2

≥ ∥y∥2 − 1
8α2 α2(∥y∥ + 1)2

≥ (1 − 1
8 · 4)∥y∥2

≥ 1
2 .
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Proof Cont.

We can also see that x has a lower cost:

qθ(x) ≤ qθ(x) + |qθ(x) − qθ(x)| ≤ ∥Qθ − Qθ∥2∥x∥2 ≤ 1
8α2 .

Thus, all compact solutions must belong to the compact set
S = {x = (x1, y) : ∥y∥ ≤ 1, ∥x∥ ≤ 2α}. Applying Theorem 8, we
see that

∥y⋆
θ ∥2 ≤ |qθ(x⋆

θ )| + |qθ(x⋆
θ ) − qθ(x⋆

θ )| ≤ ∥qθ − qθ∥sup + |qθ(x⋆
θ )| → 0,

as θ → θ. Since a feasible point satisfies x1 = v⊤y ±
√

y⊤Vy + 1,
we see that x1 = ±1.
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Continuity of Dual Optimal Solution

Theorem

Let xθ be a critical point of (Qθ). Let s = codimX , and let σθ be
the s-th largest singular value of Dg(xθ).

1. If ACQX (xθ) holds, then there exists λθ ∈ Λθ(xθ) with
∥λθ∥ ≤ 1

σθ
∥∇qθ(xθ)∥.

2. If ACQX (x) holds and xθ → x as θ → θ, then there exists
λθ ∈ Λθ(xθ) with λθ → 0.

Proof.
1. If ACQX (xθ) holds, then rank(Dg(xθ)) = s, so σθ > 0. Since

Λθ(xθ) is the solution space of λ⊤Dg(xθ) = −∇qθ(xθ). The
theorem follows from noticing that the 2-norm of the
pseudo-inverse of Dg(xθ) is 1

σθ
.
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Proof.
1. If ACQX (xθ) holds, then rank(Dg(xθ)) = s, so σθ > 0. Since

Λθ(xθ) is the solution space of λ⊤Dg(xθ) = −∇qθ(xθ). The
theorem follows from noticing that the 2-norm of the
pseudo-inverse of Dg(xθ) is 1

σθ
.

2. Since ACQX (x) must hold in a neighborhood of x , and
∇qθ(xθ) = 2Qθxθ = 0, the result follows from the first part.
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Proof of General Result

Recall the main theorem:

Theorem
Consider (Qθ). Suppose Q(θ) is continuous, and c ̸= 0. Suppose θ
is such that Q(θ) ⪰ 0 has corank 1, and q⋆(θ) = 0. If ACQX (x)
holds, then (Qθ) is SDP stable near θ and (Pθ) shares its
minimizer.

Proof.
We have shown that λ = 0 is an optimal solution for (Dθ), and we
are given that Hθ(0) = Qθ has corank 1. Applying previous lemmas
show that we have (xθ, λθ) ∈ L(θ) such that xθ → x and λθ → 0
as θ → θ. Then we have weak continuity, so applying another
previous theorem completes the result.
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Conclusion

▶ We have shown that a particular family of parametrized
problems is robust under some weak assumptions

▶ The results also extend to the case where we can perturb the
constraints

▶ We also are interested in more qualitative bounds under
possibly more restrictive assumptions.
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