Introduction to Convex Interpolation

Pranav Reddy

University of California, San Diego

October 4, 2023

KO K K Ø K K E K K E K V K K K K K K K K K

Overview

[Introduction](#page-2-0)

[Preliminaries](#page-2-0) [Defining the PEP](#page-5-0)

[Convex Interpolation](#page-16-0)

[Motivation](#page-16-0) [Convex Conjugation](#page-24-0)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Preliminaries

If we have a convex function f and we know that f is (sub)differentiable, how can we solve the problem

 $\min_{x \in \mathbb{R}^n} f(x)$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Preliminaries

If we have a convex function f and we know that f is (sub)differentiable, how can we solve the problem

 $\min_{x \in \mathbb{R}^n} f(x)$

Some options:

1. Nelder-Mead, golden section or other algorithms not requiring differentiability

KORKARYKERKER POLO

- 2. First-order algorithms (GD, AGD, SGD, etc)
- 3. Second-order algorithms (Newton)

Preliminaries

If we have a convex function f and we know that f is (sub)differentiable, how can we solve the problem

 $\min_{x \in \mathbb{R}^n} f(x)$

Some options:

- 1. Nelder-Mead, golden section or other algorithms not requiring differentiability
- 2. First-order algorithms (GD, AGD, SGD, etc)
- 3. Second-order algorithms (Newton)

We focus on option 2, and ask how to analyze different variants?

KORKARYKERKER POLO

How do we define a performance measure? Some options:

- ▶ Gradient norm: $||\nabla f(x_n)||^2$
- ▶ Objective gap: $f(x_n) f(x_*)$
- ▶ Distance from minimizer: $||x_n x_{\star}||^2$

How do we define a performance measure? Some options:

- ▶ Gradient norm: $||\nabla f(x_n)||^2$
- ▶ Objective gap: $f(x_n) f(x_*)$
- ▶ Distance from minimizer: $||x_n x_{\star}||^2$

Classic results for first-order methods typically involve showing that one of these measures decay as a function of

- ▶ Number of iterations: N
- ▶ Starting conditions of algorithm (e.g. $||x_0 x_{\star}||^2$)
- ▶ Properties of the function class (e.g. L-smoothness, μ -strong convexity, etc.)

KORKAR KERKER SAGA

We can generalize this by looking at the worst-case performance of a given first-order method, M . That is, given

KORKARYKERKER POLO

- ▶ Number of iterations: N
- \blacktriangleright Initial conditions: $\mathcal C$
- \blacktriangleright Class of functions: \digamma
- \blacktriangleright Performance measure: $\mathcal E$

We can generalize this by looking at the worst-case performance of a given first-order method, M . That is, given

- ▶ Number of iterations: N
- \blacktriangleright Initial conditions: $\mathcal C$
- \blacktriangleright Class of functions: \digamma
- \blacktriangleright Performance measure: $\mathcal E$

What is the worst possible value of \mathcal{E} ? Equivalently, what is the worst possible performance of M over F, given initial conditions $\mathcal C$ and N iterations, as measured using \mathcal{E} ?

KORKARYKERKER POLO

Performance Estimation Problem

We can turn this into an optimization problem, called the Performance Estimation Problem by Drori and Teboulle [\[1\]](#page-82-0):

> $\max_{f \in \mathcal{F}} \mathcal{E} (\{x_i, f_i, g_i\}_{i=1,...,N,\star})$ such that $f \in \mathcal{F}$ x_* is optimal $\{x_i, f_i, g_i\}_{i=1,\dots,N, \star}$ are generated by $\mathcal M$

> > KID KA KERKER KID KO

Performance Estimation Problem

We can turn this into an optimization problem, called the Performance Estimation Problem by Drori and Teboulle [\[1\]](#page-82-0):

$$
\max_{f \in \mathcal{F}} \mathcal{E}(\{x_i, f_i, g_i\}_{i=1,\ldots,N,\star})
$$

such that $f \in \mathcal{F}$

 $x₊$ is optimal

 $\{x_i, f_i, g_i\}_{i=1,\dots,N, \star}$ are generated by $\mathcal M$

The problem is that this is an infinite-dimensional problem due to the decision variable being $f \in \mathcal{F}$.

KELK KØLK VELKEN EL 1990

Performance Estimation Problem

We can turn this into an optimization problem, called the Performance Estimation Problem by Drori and Teboulle [\[1\]](#page-82-0):

$$
\max_{f \in \mathcal{F}} \mathcal{E}(\{x_i, f_i, g_i\}_{i=1,\ldots,N,\star})
$$

such that $f \in \mathcal{F}$

 $x₊$ is optimal

 $\{x_i, f_i, g_i\}_{i=1,\dots,N, \star}$ are generated by $\mathcal M$

The problem is that this is an infinite-dimensional problem due to the decision variable being $f \in \mathcal{F}$.

KORKAR KERKER SAGA

Is there a finite representation of a given function $f \in \mathcal{F}$?

This is known as an interpolation problem: Given a set of points $(x_i, f_i)_{i\in I}$, does there exist a function f such that $f(x_i) = f_i$ for all i?

This is known as an interpolation problem: Given a set of points $(x_i, f_i)_{i\in I}$, does there exist a function f such that $f(x_i) = f_i$ for all i?

 \blacktriangleright In general we typically also want f to satisfy some conditions, like smoothness, convexity, etc.

This is known as an interpolation problem: Given a set of points $(x_i, f_i)_{i\in I}$, does there exist a function f such that $f(x_i) = f_i$ for all i?

 \blacktriangleright In general we typically also want f to satisfy some conditions, like smoothness, convexity, etc.

KORKAR KERKER SAGA

For polynomials, we know that given x_0, \ldots, x_n and y_0, \ldots, y_n , there is a unique polynomial of degree n such that $p(\mathsf{x}_i) = \mathsf{y}_i.$ Similar interpolation results exist for:

- \blacktriangleright C^k Splines
- \blacktriangleright Trigonometric polynomials
- ▶ Rational functions
- ▶ Wavelets

This is known as an interpolation problem: Given a set of points $(x_i, f_i)_{i\in I}$, does there exist a function f such that $f(x_i) = f_i$ for all i?

 \blacktriangleright In general we typically also want f to satisfy some conditions, like smoothness, convexity, etc.

For polynomials, we know that given x_0, \ldots, x_n and y_0, \ldots, y_n , there is a unique polynomial of degree n such that $p(\mathsf{x}_i) = \mathsf{y}_i.$ Similar interpolation results exist for:

- \blacktriangleright C^k Splines
- \blacktriangleright Trigonometric polynomials
- \blacktriangleright Rational functions
- ▶ Wavelets

If such a result exists for convex functions, we could transform the PEP to a finite dimensional problem.

Nonsmooth Convex Interpolation

We will build the tools needed to prove such a result. The result in the case of general convex functions is well-known [\[2\]](#page-82-1), if we give ourselves additional first-order information.

Theorem

Given a set of points $(x_i, f_i, g_i)_{i \in I}$, there exists a convex function f such that $f(x_i) = f_i$ and $g_i \in \partial f(x_i)$ if and only if

$$
f_i\geq f_j+\langle g_i,x_i-x_j\rangle
$$

KORKAR KERKER SAGA

for all $i, j \in I$.

Nonsmooth Convex Interpolation

Proof.

Consider the function $f(x) = \max_{i \in I} \{f_i + \langle g_i, x - x_i \rangle\}$. Then,

$$
f(x_j) = \max_{i \in I} \{f_i + \langle g_i, x_j - x_i \rangle\}
$$

\n
$$
\geq f_j + \langle g_j, x_j - x_j \rangle
$$

\n
$$
= f_j.
$$

Additionally, by hypothesis,

$$
f_j\geq f_i+\langle g_i,x_j-x_i\rangle\geq f(x_j).
$$

This also implies that \mathcal{g}_j is a subgradient at each x_j , since

$$
f(x) = \max_{i \in I} \{f_i + \langle g_i, x - x_i \rangle\} \geq f(x_i) + \langle g_i, x - x_i \rangle.
$$

KID KA KERKER E VOOR

Smooth Convex Interpolation

Th result from before came from a simple discretization of one of the definitions of convexity. Can we do the same for smooth or strongly convex functions?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Simple Discretization is not Sufficient

We have the following two equations characterizing L-smooth convex functions

$$
f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbb{R}^d,
$$

$$
\|\nabla f(x) - \nabla f(x)\| \le L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Simple Discretization is not Sufficient

We have the following two equations characterizing L-smooth convex functions

$$
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbb{R}^d,
$$

$$
\|\nabla f(x) - \nabla f(x)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d.
$$

However, the discretization

$$
f(x_j) \ge f(x_i) + \langle \nabla f(x_i), x_j - x_i \rangle, \quad \forall i, j \in I
$$

$$
\|\nabla f(x_i) - \nabla f(x_j)\| \le L\|x_i - x_j\|, \quad \forall i, j \in I
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

is not sufficient to guarantee interpolability.

Counterexample to Discretization

Consider $(x_1, f_1, g_1) = (-1, 1, -2)$ and $(x_2, f_2, g_2) = (0, 0, -1)$.

メロトメ 御 トメ きょくきょ \equiv 990

Counterexample to Discretization

Proof.

Since f is convex and L-smooth, we know that its derivative is nondecreasing and satisfies the intermediate value theorem. We can integrate like so:

$$
f(-1) = f(0) + \int_0^{-1} f'(x) dx
$$

= $\int_0^{-1} f'(x) dx$
> $\int_0^{-1} (-1) dx$
> 1

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Counterexample to Discretization

Proof

Since f is convex and L-smooth, we know that its derivative is nondecreasing and satisfies the intermediate value theorem. We can integrate like so:

$$
f(-1) = f(0) + \int_0^{-1} f'(x) dx
$$

= $\int_0^{-1} f'(x) dx$
> $\int_0^{-1} (-1) dx$
> 1

Essentially, the curvature required by the interpolation conditions would force the function to lie strictly above its linear underapproximation, but this produces a singularity at $x = -1$.
Therefore, such a function cannot exist. Therefore, such a function cannot exist.

Smooth Strongly Convex Interpolation

We would like to find a characterization of L-smooth functions that can be discretized in a satisfactory way. The tool we can use to investigate this is convex conjugation.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Smooth Strongly Convex Interpolation

We would like to find a characterization of L-smooth functions that can be discretized in a satisfactory way. The tool we can use to investigate this is convex conjugation.

Definition

Let $f : \mathbb{R}^d \to \mathbb{R} \cup \{\infty\}$ be a function. The Legendre-Fenchel conjugate of f is defined as

$$
f^{\star}(x^{\star}) := \sup_{x \in \mathbb{R}} \{ \langle x^{\star}, x \rangle - f(x) \}.
$$

An interpretation of this is that conjugation represents the largest global linear underestimators of f .

KORKAR KERKER SAGA

Convex Conjugation Example Consider

$$
f(x)=e^x
$$

Then,

$$
f^{\star}(x^{\star}) = \sup_{x} \{ \langle x^{\star}, x \rangle - f(x) \} = \sup_{x} \{ x^{\star}x - e^{\star} \}
$$

Kロトメ部トメミトメミト ミニのQC

Convex Conjugation Example Consider

$$
f(x)=e^x
$$

Then,

$$
f^{\star}(x^{\star}) = \sup_{x} \{ \langle x^{\star}, x \rangle - f(x) \} = \sup_{x} \{ x^{\star}x - e^{\star} \}
$$

Kロトメ部トメミトメミト ミニのQC

Suppose $x^* < 0$. Then, the quantity $x^*x - e^x$ is unbounded, so the conjugate cannot exist.

Suppose $x^* < 0$. Then, the quantity $x^*x - e^x$ is unbounded, so the conjugate cannot exist.

Suppose $x^* = 0$. Then, $x^*x - e^x = -e^x$, which is bounded above by 0, so $f^{\star}(0)=0$.

Suppose $x^* < 0$. Then, the quantity $x^*x - e^x$ is unbounded, so the conjugate cannot exist.

Suppose $x^* = 0$. Then, $x^*x - e^x = -e^x$, which is bounded above by 0, so $f^{\star}(0)=0$.

Suppose $x^* > 0$. Then, $x^*x - e^x$ is differentiable in x and goes to $-\infty$ in both directions, so it must have a maximum somewhere.

Suppose $x^* < 0$. Then, the quantity $x^*x - e^x$ is unbounded, so the conjugate cannot exist.

Suppose $x^* = 0$. Then, $x^*x - e^x = -e^x$, which is bounded above by 0, so $f^{\star}(0)=0$.

Suppose $x^* > 0$. Then, $x^*x - e^x$ is differentiable in x and goes to $-\infty$ in both directions, so it must have a maximum somewhere.

If we take the derivative with respect to x , we get

$$
\frac{\partial}{\partial x}(x^{\star}x - e^x) = x^{\star} - e^x
$$

Suppose $x^* < 0$. Then, the quantity $x^*x - e^x$ is unbounded, so the conjugate cannot exist.

Suppose $x^* = 0$. Then, $x^*x - e^x = -e^x$, which is bounded above by 0, so $f^{\star}(0)=0$.

Suppose $x^* > 0$. Then, $x^*x - e^x$ is differentiable in x and goes to $-\infty$ in both directions, so it must have a maximum somewhere. If we take the derivative with respect to x , we get

$$
\frac{\partial}{\partial x}(x^{\star}x - e^x) = x^{\star} - e^x
$$

Solving this for the critical point gives

$$
x = \log(x^\star),
$$

so therefore

$$
f^{\star}(x^{\star}) = x^{\star} \log(x^{\star}) - x^{\star}
$$

KORKAR KERKER SAGA

Interpretation

Suppose we say $f(x)$ is the cost to produce quantity x of a product, and suppose x^* is the price per unit. Then, the optimal profit we can get is

$$
\sup_{x}\{\langle x,x^{\star}\rangle - f(x)\} = f^{\star}(x^{\star}).
$$

If f is convex and differentiable, then the optimal point is given by $x^* - f'(x) = 0$. The tangent from that point will intersect the vertical axis at $-(\langle x, x^{\star}\rangle - f(x)).$

KORKAR KERKER SAGA

Interpretation

K ロ ト K 御 ト K 君 ト K 君 ト 一君 … 2990

Properties of Convex Conjugates

1. f^* is convex and closed, even when f is not.

Kロトメ部トメミトメミト ミニのQC
- 1. f^* is convex and closed, even when f is not.
- 2. Fenchel's Inequality: $f(x) + f^*(x^*) \ge \langle x, x^* \rangle$, and equality holds if and only if $x^* \in \partial f(x)$.

- 1. f^* is convex and closed, even when f is not.
- 2. Fenchel's Inequality: $f(x) + f^*(x^*) \ge \langle x, x^* \rangle$, and equality holds if and only if $x^* \in \partial f(x)$.
- 3. $f^{**} \leq f$, and if f is a proper closed convex function, then $f^{\star\star}=f$.

- 1. f^* is convex and closed, even when f is not.
- 2. Fenchel's Inequality: $f(x) + f^*(x^*) \ge \langle x, x^* \rangle$, and equality holds if and only if $x^* \in \partial f(x)$.
- 3. $f^{**} \leq f$, and if f is a proper closed convex function, then $f^{\star\star}=f$.
- 4. For a proper closed convex function f , $x^* \in \partial f(x)$ if and only if $x \in \partial f^*(x^*)$.

- 1. f^* is convex and closed, even when f is not.
- 2. Fenchel's Inequality: $f(x) + f^*(x^*) \ge \langle x, x^* \rangle$, and equality holds if and only if $x^* \in \partial f(x)$.
- 3. $f^{**} \leq f$, and if f is a proper closed convex function, then $f^{\star\star}=f$.
- 4. For a proper closed convex function f , $x^* \in \partial f(x)$ if and only if $x \in \partial f^*(x^*)$.

KORKAR KERKER SAGA

Property 4 is interesting: it says that convex conjugation interchanges coordinates and subgradients, which matches our economic analogy from before.

Proof.

We will use an equivalent definition of convexity [\[3\]](#page-82-0). Define the epigraph of f as epi $f := \{(x, y) : f(x) \le y\}$. Then, f is a convex function if and only if epi f is a convex set.

Proof.

We will use an equivalent definition of convexity [\[3\]](#page-82-0). Define the epigraph of f as epi $f := \{(x, y) : f(x) \le y\}$. Then, f is a convex function if and only if epi f is a convex set. The proof of 1 follows from realizing that the mapping $x^* \mapsto \langle x, x^* \rangle - f(x)$ is affine, and therefore convex, so its epigraph is convex, and additionally it is also closed.

KORKAR KERKER DRAM

Proof.

We will use an equivalent definition of convexity [\[3\]](#page-82-0). Define the epigraph of f as epi $f := \{(x, y) : f(x) \le y\}$. Then, f is a convex function if and only if epi f is a convex set.

The proof of 1 follows from realizing that the mapping $x^* \mapsto \langle x, x^* \rangle - f(x)$ is affine, and therefore convex, so its epigraph is convex, and additionally it is also closed.

Taking the intersection of all epigraphs over all values of x means we take the intersection of convex and closed sets, which is also convex and closed, and this is precisely the epigraph of f^* .

KORKAR KERKER SAGA

Proof.

The proof of 2 follows from the definition:

$$
f^*(x^*) = \sup_x \{ \langle x^*, x \rangle - f(x) \}
$$

$$
\geq \langle x^*, x \rangle - f(x)
$$

$$
\iff
$$

$$
f(x) + f^*(x^*) \geq \langle x^*, x \rangle
$$

For the case of equality, we have that

$$
x^* \in \partial f(x) \iff f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z
$$

For the case of equality, we have that

$$
x^* \in \partial f(x) \iff f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z
$$

$$
\iff f(z) - \langle x^*, z \rangle \ge f(x) - \langle x^*, x \rangle
$$

For the case of equality, we have that

$$
x^* \in \partial f(x) \iff f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z
$$

$$
\iff f(z) - \langle x^*, z \rangle \ge f(x) - \langle x^*, x \rangle
$$

$$
\iff \langle x^*, z \rangle - f(z) \le \langle x^*, x \rangle - f(x)
$$

For the case of equality, we have that

$$
x^* \in \partial f(x) \iff f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z
$$

\n
$$
\iff f(z) - \langle x^*, z \rangle \ge f(x) - \langle x^*, x \rangle
$$

\n
$$
\iff \langle x^*, z \rangle - f(z) \le \langle x^*, x \rangle - f(x)
$$

\n
$$
\iff \sup_{z \in \text{dom}(f)} \{ \langle x^*, z \rangle - f(z) \} \le \langle x^*, x \rangle - f(x)
$$

For the case of equality, we have that

$$
x^* \in \partial f(x) \iff f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z
$$

\n
$$
\iff f(z) - \langle x^*, z \rangle \ge f(x) - \langle x^*, x \rangle
$$

\n
$$
\iff \langle x^*, z \rangle - f(z) \le \langle x^*, x \rangle - f(x)
$$

\n
$$
\iff \sup_{z \in \text{dom}(f)} \{ \langle x^*, z \rangle - f(z) \} \le \langle x^*, x \rangle - f(x)
$$

\n
$$
\iff \langle x^*, x \rangle - f(x) = f^*(x^*)
$$

For the case of equality, we have that

$$
x^* \in \partial f(x) \iff f(z) \ge f(x) + \langle x^*, z - x \rangle \qquad \forall z
$$

\n
$$
\iff f(z) - \langle x^*, z \rangle \ge f(x) - \langle x^*, x \rangle
$$

\n
$$
\iff \langle x^*, z \rangle - f(z) \le \langle x^*, x \rangle - f(x)
$$

\n
$$
\iff \sup_{z \in \text{dom}(f)} \{ \langle x^*, z \rangle - f(z) \} \le \langle x^*, x \rangle - f(x)
$$

\n
$$
\iff \langle x^*, x \rangle - f(x) = f^*(x^*)
$$

\n
$$
\iff \langle x^*, x \rangle = f(x) + f^*(x^*).
$$

For the proof of 3, we will first show that $f^{\star\star}(x) \leq f(x)$.

KO KKOKKEKKEK E DAG

For the proof of 3, we will first show that $f^{\star\star}(x) \leq f(x)$.

$$
f^{**}(x) = \sup_{z} \{x^{\top}z - f^{*}(z)\}
$$

=
$$
\sup_{z} \{x^{\top}z - \sup_{y} \{z^{\top}y - f(y)\}\}
$$

KO KKOKKEKKEK E DAG

For the proof of 3, we will first show that $f^{\star\star}(x) \leq f(x)$.

$$
f^{**}(x) = \sup_{z} \{ x^{\top} z - f^{*}(z) \}
$$

=
$$
\sup_{z} \{ x^{\top} z - \sup_{y} \{ z^{\top} y - f(y) \} \}
$$

=
$$
\sup_{z} \{ x^{\top} z + \inf_{y} \{ f(y) - z^{\top} y \} \}
$$

KO KKOKKEKKEK E DAG

For the proof of 3, we will first show that $f^{\star\star}(x) \leq f(x)$.

$$
f^{**}(x) = \sup_{z} \{ x^{\top} z - f^{*}(z) \}
$$

= $\sup_{z} \{ x^{\top} z - \sup_{y} \{ z^{\top} y - f(y) \} \}$
= $\sup_{z} \{ x^{\top} z + \inf_{y} \{ f(y) - z^{\top} y \} \}$
= $\sup_{z} \inf_{y} \{ x^{\top} z + f(y) - z^{\top} y \}$

For the proof of 3, we will first show that $f^{\star\star}(x) \leq f(x)$.

$$
f^{**}(x) = \sup_{z} \{ x^{\top} z - f^{*}(z) \}
$$

= $\sup_{z} \{ x^{\top} z - \sup_{y} \{ z^{\top} y - f(y) \} \}$
= $\sup_{z} \{ x^{\top} z + \inf_{y} \{ f(y) - z^{\top} y \} \}$
= $\sup_{z} \inf_{y} \{ x^{\top} z + f(y) - z^{\top} y \}$
 $\leq \inf_{y} \sup_{z} \{ z^{\top} (x - y) + f(y) \}$

f

For the proof of 3, we will first show that $f^{\star\star}(x) \leq f(x)$.

$$
^{**}(x) = \sup_{z} \{x^{\top}z - f^{*}(z)\}
$$

\n
$$
= \sup_{z} \{x^{\top}z - \sup_{y} \{z^{\top}y - f(y)\}\}
$$

\n
$$
= \sup_{z} \{x^{\top}z + \inf_{y} \{f(y) - z^{\top}y\}\}
$$

\n
$$
= \sup_{z} \inf_{y} \{x^{\top}z + f(y) - z^{\top}y\}
$$

\n
$$
\leq \inf_{y} \sup_{z} \{z^{\top}(x - y) + f(y)\}
$$

\n
$$
\leq f(x)
$$

KO K K Ø K K E K K E K V K K K K K K K K K K

Now suppose f is proper, closed, and convex. Then, its epigraph is nonempty, closed, and convex.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Now suppose f is proper, closed, and convex. Then, its epigraph is nonempty, closed, and convex.

We know from the previous results that $f^{\star\star}$ is also closed and convex, and since $f^{\star\star} \leq f$, it must also be proper. Therefore, its epigraph is also nonempty, closed, and convex.

We want to show that $f^{\star\star} \geq f$ as well. Suppose that $f^{\star\star}(x) < f(x)$ at some point x.

We want to show that $f^{\star\star} \geq f$ as well. Suppose that $f^{\star\star}(x) < f(x)$ at some point x.

Then, by the hyperplane separation theorem, we can strictly separate epi f from $(x, f^{\star\star}(x))$, and this hyperplane cannot be vertical. This gives, for some $\varepsilon > 0$ and vector y,

$$
f(z) - \varepsilon \ge \langle y, z - x \rangle + f^{\star \star}(x) \quad \forall z
$$

However, this contradicts Fenchel's inequality, so therefore $f^{\star\star} = f$. This also proves that for proper closed convex functions, conjugation interchanges coordinates and gradients, which we can prove by taking the biconjugate.

We want to show that $f^{\star\star} \geq f$ as well. Suppose that $f^{\star\star}(x) < f(x)$ at some point x.

Then, by the hyperplane separation theorem, we can strictly separate epi f from $(x, f^{\star\star}(x))$, and this hyperplane cannot be vertical. This gives, for some $\varepsilon > 0$ and vector y,

$$
f(z) - \varepsilon \ge \langle y, z - x \rangle + f^{\star\star}(x) \quad \forall \ z
$$

$$
\langle y, x \rangle - \varepsilon \ge \langle y, z \rangle - f(z) + f^{\star\star}(x)
$$

$$
\langle y, x \rangle - \varepsilon \ge f^{\star}(y) + f^{\star\star}(x)
$$

However, this contradicts Fenchel's inequality, so therefore $f^{\star\star} = f$. This also proves that for proper closed convex functions, conjugation interchanges coordinates and gradients, which we can prove by taking the biconjugate.

We want to show that $f^{\star\star} \geq f$ as well. Suppose that $f^{\star\star}(x) < f(x)$ at some point x.

Then, by the hyperplane separation theorem, we can strictly separate epi f from $(x, f^{\star\star}(x))$, and this hyperplane cannot be vertical. This gives, for some $\varepsilon > 0$ and vector y,

$$
f(z) - \varepsilon \ge \langle y, z - x \rangle + f^{\star\star}(x) \quad \forall \ z
$$

$$
\langle y, x \rangle - \varepsilon \ge \langle y, z \rangle - f(z) + f^{\star\star}(x)
$$

$$
\langle y, x \rangle - \varepsilon \ge f^{\star}(y) + f^{\star\star}(x)
$$

$$
\langle y, x \rangle > f^{\star}(y) + f^{\star\star}(x)
$$

However, this contradicts Fenchel's inequality, so therefore $f^{\star\star} = f$. This also proves that for proper closed convex functions, conjugation interchanges coordinates and gradients, which we can prove by taking the biconjugate.

Conjugation for Interpolation

We can now prove results that we will need for convex interpolation.

Theorem

Let f be a proper closed convex function. Then, f is L-smooth $(f \in \mathcal{F}_{0,L})$ if and only if f^\star is $\frac{1}{L}$ -strongly convex $(f \in \mathcal{F}_{\frac{1}{L}, \infty})$.

Conjugation for Interpolation

Theorem

Let f be a proper closed convex function. Then, f is L-smooth $(f \in \mathcal{F}_{0,L})$ if and only if f^\star is $\frac{1}{L}$ -strongly convex $(f \in \mathcal{F}_{\frac{1}{L}, \infty})$.

Proof.

We use the following characterizations of L -smooth and μ -strongly convex functions.

$$
f \in \mathcal{F}_{0,L} \iff
$$
\n
$$
\frac{1}{L} \|\nabla f(y) - \nabla f(x)\|^2 \le \langle \nabla f(y) - \nabla f(x), y - x \rangle \le L \|x - y\|^2
$$
\n
$$
f \in \mathcal{F}_{\mu,\infty} \iff
$$
\n
$$
\mu \|x - y\|^2 \le \langle \nabla f(y) - \nabla f(x), y - x \rangle \le \frac{1}{\mu} \|\nabla f(y) - \nabla f(x)\|^2
$$

The result then follows from realizing that $\nabla f^*(\nabla f(x)) = x$. \Box

We need one last lemma to transform μ -strongly convex functions to general convex functions.

Lemma

Consider $f \in \mathcal{F}_{u,L}$ with $0 \leq \mu < L \leq \infty$. Define $\phi(x) := f(x) - \frac{\mu}{2}$ $\frac{\mu}{2} \|{\mathsf x} - {\mathsf x}_{\star}\|^1$. Then, $\phi \in \mathcal{F}_{0, L-\mu}$ if and only if $f \in \mathcal{F}_{\mu L}$.

The mapping of $f \mapsto f - \frac{\mu}{2}$ $\frac{\mu}{2} \|\cdot\|^2$ is known as **minimal curvature** subtraction.

Proof. Suppose $f \in \mathcal{F}_{\mu,L}$. Then,

$$
\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle = \langle \nabla f(x) - \nabla f(y) - \mu(x - y), x - y \rangle
$$

= $\langle \nabla f(x) - \nabla f(y), x - y \rangle - \mu ||x - y||^2$

We use the inequality $\langle \nabla f(x) - \nabla f(y), x - y \rangle \le L \|x - y\|^2$ if and only if $f \in \mathcal{F}_{0,L}$ (assuming f is C^1). A proof of this can be found in Nesterov's lectures [\[4\]](#page-82-1).

Proof. Suppose $f \in \mathcal{F}_{\mu,L}$. Then,

$$
\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle = \langle \nabla f(x) - \nabla f(y) - \mu(x - y), x - y \rangle
$$

=\langle \nabla f(x) - \nabla f(y), x - y \rangle - \mu ||x - y||^2
\le L ||x - y||^2 - \mu ||x - y||^2
\le (L - \mu) ||x - y||^2.

We use the inequality $\langle \nabla f(x) - \nabla f(y), x - y \rangle \le L \|x - y\|^2$ if and only if $f \in \mathcal{F}_{0,L}$ (assuming f is C^1). A proof of this can be found in Nesterov's lectures [\[4\]](#page-82-1).

Proof.

Suppose $\phi \in \mathcal{F}_{0,L-\mu}$. Then, $f(x) = \phi(x) + \frac{\mu}{2} ||x - x_{\star}||^2$. By convexity and $(L - \mu)$ -smoothness:

$$
\langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle \nabla \phi(x) - \nabla \phi(y) + \mu(x - y), x - y \rangle
$$

= $\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle + \mu ||x - y||^2$

KORKARYKERKER POLO

This proves L-smoothness.

Proof.

Suppose $\phi \in \mathcal{F}_{0,L-\mu}$. Then, $f(x) = \phi(x) + \frac{\mu}{2} ||x - x_{\star}||^2$. By convexity and $(L - \mu)$ -smoothness:

$$
\langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle \nabla \phi(x) - \nabla \phi(y) + \mu(x - y), x - y \rangle
$$

= $\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle + \mu ||x - y||^2$
 $\le (L - \mu) ||x - y||^2 + \mu ||x - y||^2$
= $L ||x - y||^2$.

 $(1 - 4)$

This proves L-smoothness. For strong convexity, we have that

Proof.

Suppose $\phi \in \mathcal{F}_{0,L-\mu}$. Then, $f(x) = \phi(x) + \frac{\mu}{2} ||x - x_{\star}||^2$. By convexity and $(L - \mu)$ -smoothness:

$$
\langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle \nabla \phi(x) - \nabla \phi(y) + \mu(x - y), x - y \rangle
$$

= $\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle + \mu ||x - y||^2$
 $\le (L - \mu) ||x - y||^2 + \mu ||x - y||^2$
= $L ||x - y||^2$.

This proves L-smoothness. For strong convexity, we have that

$$
0 \leq \langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle
$$

= $\langle \nabla f(x) - \nabla f(y), x - y \rangle - \mu ||x - y||^2$

 $(1 - 4)$

Proof.

Suppose $\phi \in \mathcal{F}_{0,L-\mu}$. Then, $f(x) = \phi(x) + \frac{\mu}{2} ||x - x_{\star}||^2$. By convexity and $(L - \mu)$ -smoothness:

$$
\langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle \nabla \phi(x) - \nabla \phi(y) + \mu(x - y), x - y \rangle
$$

= $\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle + \mu ||x - y||^2$
 $\le (L - \mu) ||x - y||^2 + \mu ||x - y||^2$
= $L ||x - y||^2$.

This proves L-smoothness. For strong convexity, we have that

$$
0 \leq \langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle
$$

= $\langle \nabla f(x) - \nabla f(y), x - y \rangle - \mu ||x - y||^2$
 $\mu ||x - y||^2 \leq \langle \nabla f(x) - \nabla f(y), x - y \rangle.$

This inequality is an equivalent definition of strong convexity for C 1 functions (Nesterov [\[4\]](#page-82-1)). $(1 - 4)$

Convex Interpolation Theorem

Now, we can state our result:

Theorem A set $\{(x_i, f_i, g_i)\}_{i\in I}$ is $\mathcal{F}_{\mu, L}$ -interpolable if and only if

$$
f_i - f_j - \langle g_j, x_i - x_j \rangle \ge \frac{1}{2(1 - \frac{\mu}{L})} \left(\frac{1}{L} ||g_i - g_j||^2 + \mu ||x_i - x_j||^2 - 2\frac{\mu}{L} \langle g_j - g_i, x_j - x_i \rangle \right)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

for all $i, j \in I$.
Proof.

The full proof is very long and doesn't add anything new. We focus on the main ideas.

1. Show that $\{(x_i, f_i, g_i)\}_{i \in I}$ is $\mathcal{F}_{\mu, L}$ -interpolable if and only if $\{(g_i,f_i,x_i)\}_{i\in I}$ is $\mathcal{F}_{\frac{1}{L},\frac{1}{\mu}}$ -interpolable.

KORKARYKERKER POLO

Proof.

The full proof is very long and doesn't add anything new. We focus on the main ideas.

- 1. Show that $\{(x_i, f_i, g_i)\}_{i \in I}$ is $\mathcal{F}_{\mu, L}$ -interpolable if and only if $\{(g_i,f_i,x_i)\}_{i\in I}$ is $\mathcal{F}_{\frac{1}{L},\frac{1}{\mu}}$ -interpolable.
- 2. Then, starting with a μ -strongly convex, L-smooth function f, we use minimal curvature subtraction to obtain an $(L - \mu)$ -smooth function \tilde{f} .

KORKARA KERKER SAGA

Proof.

The full proof is very long and doesn't add anything new. We focus on the main ideas.

- 1. Show that $\{(x_i, f_i, g_i)\}_{i \in I}$ is $\mathcal{F}_{\mu, L}$ -interpolable if and only if $\{(g_i,f_i,x_i)\}_{i\in I}$ is $\mathcal{F}_{\frac{1}{L},\frac{1}{\mu}}$ -interpolable.
- 2. Then, starting with a μ -strongly convex, L-smooth function f, we use minimal curvature subtraction to obtain an $(L - \mu)$ -smooth function \tilde{f} .
- 3. Then, we take \tilde{f} and map it to its conjugate \tilde{f}^\star to obtain a $\frac{1}{L-\mu}$ -strongly convex function.

YO NA E YERY E VOO

Proof.

The full proof is very long and doesn't add anything new. We focus on the main ideas.

- 1. Show that $\{(x_i, f_i, g_i)\}_{i \in I}$ is $\mathcal{F}_{\mu, L}$ -interpolable if and only if $\{(g_i,f_i,x_i)\}_{i\in I}$ is $\mathcal{F}_{\frac{1}{L},\frac{1}{\mu}}$ -interpolable.
- 2. Then, starting with a μ -strongly convex, L-smooth function f, we use minimal curvature subtraction to obtain an $(L - \mu)$ -smooth function \tilde{f} .
- 3. Then, we take \tilde{f} and map it to its conjugate \tilde{f}^\star to obtain a $\frac{1}{L-\mu}$ -strongly convex function.

KORKAR KERKER DRAM

4. We again use minimal curvature subtraction to obtain a convex h^* , which we can use our nonsmooth convex interpolation result for.

If we take $\mu = 0$, then we get the following:

$$
f_i-f_j-\langle g_j,x_i-x_j\rangle\geq \frac{1}{2L}\|g_i-g_j\|^2.
$$

Equivalently,

$$
f_i \geq f_j + \langle g_j, x_i - x_j \rangle + \frac{1}{2L} \|g_i - g_j\|^2.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

If we take $\mu = 0$, then we get the following:

$$
f_i-f_j-\langle g_j,x_i-x_j\rangle\geq \frac{1}{2L}\|g_i-g_j\|^2.
$$

Equivalently,

$$
f_i \geq f_j + \langle g_j, x_i - x_j \rangle + \frac{1}{2L} \|g_i - g_j\|^2.
$$

Surprisingly, this is a discretization of the following characterization of L-smooth convex functions:

$$
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|^2.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Similarly, if we take $L = \infty$, then we get the following:

$$
f_i-f_j-\langle g_j,x_i-x_j\rangle\geq \frac{\mu}{2}||x_i-x_j||^2.
$$

Equivalently,

$$
f_i \geq f_j + \langle g_j, x_i - x_j \rangle + \frac{\mu}{2} ||x_i - x_j||^2.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Similarly, if we take $L = \infty$, then we get the following:

$$
f_i-f_j-\langle g_j,x_i-x_j\rangle\geq \frac{\mu}{2}||x_i-x_j||^2.
$$

Equivalently,

$$
f_i \geq f_j + \langle g_j, x_i - x_j \rangle + \frac{\mu}{2} ||x_i - x_j||^2.
$$

This is also a discretization of the following characterization of μ -strongly convex functions:

$$
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Similarly, if we take $L = \infty$, then we get the following:

$$
f_i-f_j-\langle g_j,x_i-x_j\rangle\geq \frac{\mu}{2}||x_i-x_j||^2.
$$

Equivalently,

$$
f_i \geq f_j + \langle g_j, x_i - x_j \rangle + \frac{\mu}{2} ||x_i - x_j||^2.
$$

This is also a discretization of the following characterization of μ -strongly convex functions:

$$
f(y) \geq f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||^2.
$$

Why are some characterizations appropriate for discretization but others are not? In the continuous case they are equivalent, but in the process of discretization information is somehow lost.

Next Time

- ▶ Apply convex interpolation to discretize PEP
- ▶ Can we find interpolation results for broader classes of functions?
- ▶ How can we discretize constrained optimization?
- \triangleright Can the PEP produce better asmyptotics, not just differences in constants?

KORK ERKER ADAM ADA

References I

- [1] Yoel Drori and Marc Teboulle. Performance of first-order methods for smooth convex minimization: a novel approach, 2012.
- [2] Adrien B. Taylor, Julien M. Hendrickx, and François Glineur. Smooth strongly convex interpolation and exact worst-case performance of first-order methods, 2016.
- [3] Ralph Tyrell Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.
- [4] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing Company, Incorporated, 1 edition, 2014.
- [5] Benjamin Grimmer. Provably faster gradient descent via long steps, 2023.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

References II

[6] Shuvomoy Das Gupta, Bart P. G. Van Parys, and Ernest K. Ryu. Branch-and-bound performance estimation programming: A unified methodology for constructing optimal optimization methods, 2023.

KORKARYKERKER POLO

[7] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.