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Preliminaries

If we have a convex function f and we know that f is
(sub)differentiable, how can we solve the problem

min
x∈Rn

f (x)

Some options:

1. Nelder-Mead, golden section or other algorithms not requiring
differentiability

2. First-order algorithms (GD, AGD, SGD, etc)

3. Second-order algorithms (Newton)

We focus on option 2, and ask how to analyze different variants?
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Measuring Performance

How do we define a performance measure? Some options:

▶ Gradient norm: ∥∇f (xn)∥2
▶ Objective gap: f (xn)− f (x⋆)

▶ Distance from minimizer: ∥xn − x⋆∥2

Classic results for first-order methods typically involve showing that
one of these measures decay as a function of

▶ Number of iterations: N

▶ Starting conditions of algorithm (e.g. ∥x0 − x⋆∥2)
▶ Properties of the function class (e.g. L-smoothness, µ-strong

convexity, etc.)
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Measuring Performance

We can generalize this by looking at the worst-case performance of
a given first-order method, M. That is, given

▶ Number of iterations: N

▶ Initial conditions: C
▶ Class of functions: F
▶ Performance measure: E

What is the worst possible value of E? Equivalently, what is the
worst possible performance of M over F , given initial conditions C
and N iterations, as measured using E?
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Performance Estimation Problem

We can turn this into an optimization problem, called the
Performance Estimation Problem by Drori and Teboulle [1]:

max
f ∈F

E ({xi , fi , gi}i=1,...,N,⋆)

such that f ∈ F
x⋆ is optimal

{xi , fi , gi}i=1,...,N,⋆ are generated by M

The problem is that this is an infinite-dimensional problem due to
the decision variable being f ∈ F .
Is there a finite representation of a given function f ∈ F?
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Interpolation

This is known as an interpolation problem: Given a set of points
(xi , fi )i∈I , does there exist a function f such that f (xi ) = fi for all
i?

▶ In general we typically also want f to satisfy some conditions,
like smoothness, convexity, etc.

For polynomials, we know that given x0, . . . , xn and y0, . . . , yn,
there is a unique polynomial of degree n such that p(xi ) = yi .
Similar interpolation results exist for:

▶ C k Splines

▶ Trigonometric polynomials

▶ Rational functions

▶ Wavelets

If such a result exists for convex functions, we could transform the
PEP to a finite dimensional problem.
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Nonsmooth Convex Interpolation

We will build the tools needed to prove such a result.
The result in the case of general convex functions is well-known
[2], if we give ourselves additional first-order information.

Theorem
Given a set of points (xi , fi , gi )i∈I , there exists a convex function f
such that f (xi ) = fi and gi ∈ ∂f (xi ) if and only if

fi ≥ fj + ⟨gi , xi − xj⟩

for all i , j ∈ I .



Nonsmooth Convex Interpolation

Proof.
Consider the function f (x) = maxi∈I{fi + ⟨gi , x − xi ⟩}. Then,

f (xj) = max
i∈I

{fi + ⟨gi , xj − xi ⟩}

≥ fj + ⟨gj , xj − xj⟩
= fj .

Additionally, by hypothesis,

fj ≥ fi + ⟨gi , xj − xi ⟩ ≥ f (xj).

This also implies that gj is a subgradient at each xj , since

f (x) = max
i∈I

{fi + ⟨gi , x − xi ⟩} ≥ f (xi ) + ⟨gi , x − xi ⟩.



Smooth Convex Interpolation

Th result from before came from a simple discretization of one of
the definitions of convexity. Can we do the same for smooth or
strongly convex functions?



Simple Discretization is not Sufficient

We have the following two equations characterizing L-smooth
convex functions

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩, ∀x , y ∈ Rd ,

∥∇f (x)−∇f (x)∥ ≤ L∥x − y∥, ∀x , y ∈ Rd .

However, the discretization

f (xj) ≥ f (xi ) + ⟨∇f (xi ), xj − xi ⟩, ∀i , j ∈ I

∥∇f (xi )−∇f (xj)∥ ≤ L∥xi − xj∥, ∀i , j ∈ I

is not sufficient to guarantee interpolability.
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Counterexample to Discretization

Consider (x1, f1, g1) = (−1, 1,−2) and (x2, f2, g2) = (0, 0,−1).
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Counterexample to Discretization

Proof.
Since f is convex and L-smooth, we know that its derivative is
nondecreasing and satisfies the intermediate value theorem.
We can integrate like so:

f (−1) = f (0) +

∫ −1

0
f ′(x)dx

=

∫ −1

0
f ′(x)dx

>

∫ −1

0
(−1)dx

> 1

Essentially, the curvature required by the interpolation conditions
would force the function to lie strictly above its linear
underapproximation, but this produces a singularity at x = −1.
Therefore, such a function cannot exist.
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Smooth Strongly Convex Interpolation

We would like to find a characterization of L-smooth functions
that can be discretized in a satisfactory way. The tool we can use
to investigate this is convex conjugation.

Definition
Let f : Rd → R ∪ {∞} be a function. The Legendre-Fenchel
conjugate of f is defined as

f ⋆(x⋆) := sup
x∈R

{⟨x⋆, x⟩ − f (x)}.

An interpretation of this is that conjugation represents the largest
global linear underestimators of f .
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Convex Conjugation Example
Consider

f (x) = ex

Then,

f ⋆(x⋆) = sup
x
{⟨x⋆, x⟩ − f (x)} = sup

x
{x⋆x − ex}

Suppose x⋆ < 0. Then, the quantity x⋆x − ex is unbounded, so
the conjugate cannot exist.
Suppose x⋆ = 0. Then, x⋆x − ex = −ex , which is bounded above
by 0, so f ⋆(0) = 0.
Suppose x⋆ > 0. Then, x⋆x − ex is differentiable in x and goes to
−∞ in both directions, so it must have a maximum somewhere.
If we take the derivative with respect to x , we get

∂

∂x
(x⋆x − ex) = x⋆ − ex

Solving this for the critical point gives

x = log(x⋆),

so therefore
f ⋆(x⋆) = x⋆ log(x⋆)− x⋆
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Interpretation

Suppose we say f (x) is the cost to produce quantity x of a
product, and suppose x⋆ is the price per unit. Then, the optimal
profit we can get is

sup
x
{⟨x , x⋆⟩ − f (x)} = f ⋆(x⋆).

If f is convex and differentiable, then the optimal point is given by
x⋆ − f ′(x) = 0. The tangent from that point will intersect the
vertical axis at −(⟨x , x⋆⟩ − f (x)).



Interpretation

(0,−f ⋆(x⋆))

x

y



Properties of Convex Conjugates

1. f ⋆ is convex and closed, even when f is not.

2. Fenchel’s Inequality: f (x) + f ⋆(x⋆) ≥ ⟨x , x⋆⟩, and equality
holds if and only if x⋆ ∈ ∂f (x).

3. f ⋆⋆ ≤ f , and if f is a proper closed convex function, then
f ⋆⋆ = f .

4. For a proper closed convex function f , x⋆ ∈ ∂f (x) if and only
if x ∈ ∂f ⋆(x⋆).

Property 4 is interesting: it says that convex conjugation
interchanges coordinates and subgradients, which matches our
economic analogy from before.



Properties of Convex Conjugates

1. f ⋆ is convex and closed, even when f is not.

2. Fenchel’s Inequality: f (x) + f ⋆(x⋆) ≥ ⟨x , x⋆⟩, and equality
holds if and only if x⋆ ∈ ∂f (x).

3. f ⋆⋆ ≤ f , and if f is a proper closed convex function, then
f ⋆⋆ = f .

4. For a proper closed convex function f , x⋆ ∈ ∂f (x) if and only
if x ∈ ∂f ⋆(x⋆).

Property 4 is interesting: it says that convex conjugation
interchanges coordinates and subgradients, which matches our
economic analogy from before.



Properties of Convex Conjugates

1. f ⋆ is convex and closed, even when f is not.

2. Fenchel’s Inequality: f (x) + f ⋆(x⋆) ≥ ⟨x , x⋆⟩, and equality
holds if and only if x⋆ ∈ ∂f (x).

3. f ⋆⋆ ≤ f , and if f is a proper closed convex function, then
f ⋆⋆ = f .

4. For a proper closed convex function f , x⋆ ∈ ∂f (x) if and only
if x ∈ ∂f ⋆(x⋆).

Property 4 is interesting: it says that convex conjugation
interchanges coordinates and subgradients, which matches our
economic analogy from before.



Properties of Convex Conjugates

1. f ⋆ is convex and closed, even when f is not.

2. Fenchel’s Inequality: f (x) + f ⋆(x⋆) ≥ ⟨x , x⋆⟩, and equality
holds if and only if x⋆ ∈ ∂f (x).

3. f ⋆⋆ ≤ f , and if f is a proper closed convex function, then
f ⋆⋆ = f .

4. For a proper closed convex function f , x⋆ ∈ ∂f (x) if and only
if x ∈ ∂f ⋆(x⋆).

Property 4 is interesting: it says that convex conjugation
interchanges coordinates and subgradients, which matches our
economic analogy from before.



Properties of Convex Conjugates

1. f ⋆ is convex and closed, even when f is not.

2. Fenchel’s Inequality: f (x) + f ⋆(x⋆) ≥ ⟨x , x⋆⟩, and equality
holds if and only if x⋆ ∈ ∂f (x).

3. f ⋆⋆ ≤ f , and if f is a proper closed convex function, then
f ⋆⋆ = f .

4. For a proper closed convex function f , x⋆ ∈ ∂f (x) if and only
if x ∈ ∂f ⋆(x⋆).

Property 4 is interesting: it says that convex conjugation
interchanges coordinates and subgradients, which matches our
economic analogy from before.



Properties of Convex Conjugates

Proof.
We will use an equivalent definition of convexity [3]. Define the
epigraph of f as epi f := {(x , y) : f (x) ≤ y}. Then, f is a convex
function if and only if epi f is a convex set.

The proof of 1 follows from realizing that the mapping
x⋆ 7→ ⟨x , x⋆⟩ − f (x) is affine, and therefore convex, so its epigraph
is convex, and additionally it is also closed.
Taking the intersection of all epigraphs over all values of x means
we take the intersection of convex and closed sets, which is also
convex and closed, and this is precisely the epigraph of f ⋆.
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Properties of Convex Conjugates

Proof.
The proof of 2 follows from the definition:

f ⋆(x⋆) = sup
x
{⟨x⋆, x⟩ − f (x)}

≥ ⟨x⋆, x⟩ − f (x)

⇐⇒
f (x) + f ⋆(x⋆) ≥ ⟨x⋆, x⟩



Properties of Convex Conjugates

For the case of equality, we have that

x⋆ ∈ ∂f (x) ⇐⇒ f (z) ≥ f (x) + ⟨x⋆, z − x⟩ ∀z

⇐⇒ f (z)− ⟨x⋆, z⟩ ≥ f (x)− ⟨x⋆, x⟩
⇐⇒ ⟨x⋆, z⟩ − f (z) ≤ ⟨x⋆, x⟩ − f (x)

⇐⇒ sup
z∈dom(f )

{⟨x⋆, z⟩ − f (z)} ≤ ⟨x⋆, x⟩ − f (x)

⇐⇒ ⟨x⋆, x⟩ − f (x) = f ⋆(x⋆)

⇐⇒ ⟨x⋆, x⟩ = f (x) + f ⋆(x⋆).
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Properties of Convex Conjugates

For the proof of 3, we will first show that f ⋆⋆(x) ≤ f (x).

f ∗∗(x) = sup
z
{x⊤z − f ∗(z)}

= sup
z
{x⊤z − sup

y
{z⊤y − f (y)}}

= sup
z
{x⊤z + inf

y
{f (y)− z⊤y}}

= sup
z

inf
y
{x⊤z + f (y)− z⊤y}

≤ inf
y
sup
z
{z⊤(x − y) + f (y)}

≤ f (x)
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Properties of Convex Conjugates

Now suppose f is proper, closed, and convex. Then, its epigraph is
nonempty, closed, and convex.

We know from the previous results that f ⋆⋆ is also closed and
convex, and since f ⋆⋆ ≤ f , it must also be proper. Therefore, its
epigraph is also nonempty, closed, and convex.
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Properties of Convex Conjugates

We want to show that f ⋆⋆ ≥ f as well. Suppose that
f ⋆⋆(x) < f (x) at some point x .

Then, by the hyperplane separation theorem, we can strictly
separate epi f from (x , f ⋆⋆(x)), and this hyperplane cannot be
vertical. This gives, for some ε > 0 and vector y ,

f (z)− ε ≥ ⟨y , z − x⟩+ f ⋆⋆(x) ∀ z

⟨y , x⟩ − ε ≥ ⟨y , z⟩ − f (z) + f ⋆⋆(x)

⟨y , x⟩ − ε ≥ f ⋆(y) + f ⋆⋆(x)

⟨y , x⟩ > f ⋆(y) + f ⋆⋆(x)

However, this contradicts Fenchel’s inequality, so therefore f ⋆⋆ = f .
This also proves that for proper closed convex functions,
conjugation interchanges coordinates and gradients, which we can
prove by taking the biconjugate.
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Conjugation for Interpolation

We can now prove results that we will need for convex
interpolation.

Theorem
Let f be a proper closed convex function. Then, f is L-smooth
(f ∈ F0,L) if and only if f ⋆ is 1

L -strongly convex (f ∈ F 1
L
,∞).



Conjugation for Interpolation

Theorem
Let f be a proper closed convex function. Then, f is L-smooth
(f ∈ F0,L) if and only if f ⋆ is 1

L -strongly convex (f ∈ F 1
L
,∞).

Proof.
We use the following characterizations of L-smooth and µ-strongly
convex functions.

f ∈ F0,L ⇐⇒
1

L
∥∇f (y)−∇f (x)∥2 ≤ ⟨∇f (y)−∇f (x), y − x⟩ ≤ L∥x − y∥2

f ∈ Fµ,∞ ⇐⇒

µ∥x − y∥2 ≤ ⟨∇f (y)−∇f (x), y − x⟩ ≤ 1

µ
∥∇f (y)−∇f (x)∥2

The result then follows from realizing that ∇f ∗(∇f (x)) = x .



Minimal Curvature Subtraction

We need one last lemma to transform µ-strongly convex functions
to general convex functions.

Lemma
Consider f ∈ Fµ,L with 0 ≤ µ < L ≤ ∞. Define
ϕ(x) := f (x)− µ

2∥x − x⋆∥1. Then, ϕ ∈ F0,L−µ if and only if
f ∈ Fµ,L.

The mapping of f 7→ f − µ
2∥ · ∥2 is known as minimal curvature

subtraction.



Minimal Curvature Subtraction

Proof.
Suppose f ∈ Fµ,L. Then,

⟨∇ϕ(x)−∇ϕ(y), x − y⟩ = ⟨∇f (x)−∇f (y)− µ(x − y), x − y⟩
= ⟨∇f (x)−∇f (y), x − y⟩ − µ∥x − y∥2

≤ L∥x − y∥2 − µ∥x − y∥2

≤ (L− µ)∥x − y∥2.

We use the inequality ⟨∇f (x)−∇f (y), x − y⟩ ≤ L∥x − y∥2 if and
only if f ∈ F0,L (assuming f is C 1). A proof of this can be found
in Nesterov’s lectures [4].
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Minimal Curvature Subtraction

Proof.
Suppose ϕ ∈ F0,L−µ. Then, f (x) = ϕ(x) + µ

2∥x − x⋆∥2. By
convexity and (L− µ)-smoothness:
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This proves L-smoothness.

For strong convexity, we have that

0 ≤ ⟨∇ϕ(x)−∇ϕ(y), x − y⟩
= ⟨∇f (x)−∇f (y), x − y⟩ − µ∥x − y∥2

µ∥x − y∥2 ≤ ⟨∇f (x)−∇f (y), x − y⟩.

This inequality is an equivalent definition of strong convexity for
C 1 functions (Nesterov [4]).
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Convex Interpolation Theorem

Now, we can state our result:

Theorem
A set {(xi , fi , gi )}i∈I is Fµ,L-interpolable if and only if

fi − fj − ⟨gj , xi − xj⟩ ≥
1

2
(
1− µ

L

)(1

L
∥gi − gj∥2

+ µ∥xi − xj∥2 − 2
µ

L
⟨gj − gi , xj − xi ⟩

)

for all i , j ∈ I .



Convex Interpolation Theorem

Proof.
The full proof is very long and doesn’t add anything new. We
focus on the main ideas.

1. Show that {(xi , fi , gi )}i∈I is Fµ,L-interpolable if and only if
{(gi , fi , xi )}i∈I is F 1

L
, 1
µ
-interpolable.

2. Then, starting with a µ-strongly convex, L-smooth function f ,
we use minimal curvature subtraction to obtain an
(L− µ)-smooth function f̃ .

3. Then, we take f̃ and map it to its conjugate f̃ ⋆ to obtain a
1

L−µ -strongly convex function.

4. We again use minimal curvature subtraction to obtain a
convex h⋆, which we can use our nonsmooth convex
interpolation result for.
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Remarks

If we take µ = 0, then we get the following:

fi − fj − ⟨gj , xi − xj⟩ ≥
1

2L
∥gi − gj∥2.

Equivalently,

fi ≥ fj + ⟨gj , xi − xj⟩+
1

2L
∥gi − gj∥2.

Surprisingly, this is a discretization of the following characterization
of L-smooth convex functions:

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ 1

2L
∥∇f (x)−∇f (y)∥2.
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Remarks

Similarly, if we take L = ∞, then we get the following:

fi − fj − ⟨gj , xi − xj⟩ ≥
µ

2
∥xi − xj∥2.
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∥xi − xj∥2.

This is also a discretization of the following characterization of
µ-strongly convex functions:

f (y) ≥ f (x) + ⟨∇f (x), y − x⟩+ µ

2
∥y − x∥2.

Why are some characterizations appropriate for discretization but
others are not? In the continuous case they are equivalent, but in
the process of discretization information is somehow lost.
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Next Time

▶ Apply convex interpolation to discretize PEP

▶ Can we find interpolation results for broader classes of
functions?

▶ How can we discretize constrained optimization?

▶ Can the PEP produce better asmyptotics, not just differences
in constants?
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