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Goals

1. Introduce the augmented Lagrangian method (ALM)

2. Understand optimality conditions for differentiable
optimization

3. Prove properties of the ALM

4. Understand limitations of ALM iterations

5. Discuss future directions
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Motivation

Let us consider the primal problem (P)

min
x∈X

f (x) (P)

s.t. gi (x) ≤ 0. i = 1, . . . ,m

where f , g1, . . . , gm are convex functions and X is a convex set.

The Lagrangian associated with (P) is L : Rn × Rm
+ → R defined

by

L(x , y) = f (x) +
m∑
i=1

yigi (x) (L)

The Lagrange dual function is

g0(y) = inf
x∈X

L(x , y)
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Duality Continued

This gives the dual problem (D)

d? = max
y∈Rm

+

g0(y) (D)

I Note that in general p? ≥ d?. This is known as weak duality.

I If p? = d?, then we say that strong duality holds.

I A natural question is to ask when a point (x , y) is optimal for
(P) and (D)
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KKT Conditions

Theorem (KKT Conditions (Necessity))

Let (x?, y?) be an optimal pair for (P) and (D) respectively.
Assume strong duality holds, so f (x?) = p? = d? = g0(y?). Then,
the following are true:

1. gi (x
?) ≤ 0 (primal feasibility)

2. y?i ≥ 0 (dual feasibility)

3. y?i gi (x
?) = 0 (strict complementarity)

4. ∇x f (x?) +
∑m

i=1 y
?
i ∇xgi (x

?) = 0 (first-order condition)
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Proof of KKT Conditions

Proof.
Let (x?, y?) be an optimal pair for (P) and (D) respectively. Then
primal and dual feasibility follow immediately.

For the other
constraints

f (x?) = g0(y?)

= inf
x∈X

L(x , y?)

= inf
x∈X

f (x) +
m∑
i=1

y?i gi (x)

≤ f (x?) +
m∑
i=1

y?i gi (x
?)

≤ f (x?)
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Proof of KKT Condition Cont.

This implies the KKT conditions immediately

I x? minimizes L(x , y?).

I Therefore,
∑m

i=1 y
?
i gi (x

?) = 0, and therefore y?i gi (x
?) = 0.

I Since x? minimizes L(x , y?), ∇xL(x?, y?) = 0.
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KKT Conditions Cont.

Theorem (KKT Conditions (Sufficient))

Assume strong duality holds, so p? = d?. Let (x?, y?) be such that
the following are true.

1. gi (x
?) ≤ 0 (primal feasibility)

2. y?i ≥ 0 (dual feasibility)

3. y?i gi (x
?) = 0 (strict complementarity)

4. ∇x f (x?) +
∑m

i=1 y
?
i ∇xgi (x

?) = 0 (first-order condition)

Then (x?, y?) are an optimal pair for (P) and (D) respectively.
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Proof of KKT Conditions

Proof.
Note that

g0(y?) = inf
x∈X

L(x , y?)

= inf
x∈X

f (x) +
m∑
i=1

y?i gi (x)

= f (x?) +
m∑
i=1

y?i gi (x
?)

= f (x?)

Note that we used the convexity of the problem here to assert that
a stationary point is a minimizer.
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Application of the KKT Conditions

This suggests some ideas for finding minima: we can minimize the
primal variable and maximize the dual variable to satisfy the KKT
conditions:

x (k+1) = argmin
x∈X

f (x) +
m∑
i=1

y
(k)
i gi (x)

y (k+1) = y (k) + c(k)∇y

(
f (x (k+1)) +

m∑
i=1

y
(k)
i gi (x

(k+1))

)

= y (k) + c(k)

g1(x (k+1))
...

gm(x (k+1))
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However, this method is difficult to use in practice. Rockafellar [3]
gives some reasons why this method is undesirable

I It is hard to ensure that y (k) ≥ 0 for all iterations

I x (k+1) may or may not exist at each iteration

I If f is not strictly convex, {x (k)} may not converge to a
minimizer
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Penalty Functions

Let us consider the problem (P) again

p? = min
x∈X

f (x) ((P))

s.t. gi (x) ≤ 0. i = 1, . . . ,m

One approach to deal with the constraint is to move it into the
cost, like so

min
x∈X

f (x) + ρ

m∑
i=1

max{0, gi (x)}

where ρ is a penalty parameter. Note that as ρ→∞ we recover
the original problem.
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Penalized Formulation

Frequently, we will also consider

min
x∈X

f (x) + ρ

m∑
i=1

max{0, gi (x)}2

I Both the linear and quadratic penalty formulations suffer from
numerical issues as ρ→∞

I Additionally, this is still not entirely an unconstrained problem

I Moreover, the objective function may not be differentiable
anymore

I To treat this issue, we will need a different formulation
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The Augmented Lagrangian

From Rockafellar [3], we can consider the following generalization
of the Lagrangian

Definition
The augmented Lagrangian of the problem (P) is
Lr : Rn × Rm → R defined as

Lr (x , y) , f (x)+
1

4r

(
m∑
i=1

max{0, yi + 2r · gi (x)}2 − ‖y‖22

)
(AL)

The augmented Lagrangian method (ALM) of Rockafellar [2] is

x (k+1) = argmin
x∈X

Lc(k)(x , y
(k))

y (k+1) = y (k) + c(k)∇yLc(k)(x
(k+1), y (k))

(ALM)

In practice, we typically cannot solve the primal update x (k+1)

update exactly, so we allow for some degree of inexactness.
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Properties of the Augmented Lagrangian

Theorem
For any r ≥ 0, we have

Lr (x , y) = min{Fr (x , u) + 〈u, y〉 | u ∈ Rm} x ∈ X

where

Fr (x , u) =

{
f0(x) + r‖u‖22 if ui ≥ gi (x), i = 1, . . . ,m

+∞ otherwise

Moreover, Lr (x , y) is convex in x and concave in y .
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Proof

Proof.
The convexity and concavity follows if we can prove the equality.
We prove slightly more general property instead. Consider

min
x∈X ,v≥0

f (x)

s.t. gi (x) + vi = 0. i = 1, . . . ,m

The corresponding penalty formulation for this problem is

Lr (x , v , y) = f (x) + r
m∑
i=1

(gi (x) + vi )
2 +

m∑
i=1

yi (gi (x) + vi )

Minimizing this in v gives

vi = max

{
0, gi (x)− 2zi

r

}
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Proof Cont.

Proof.
The corresponding penalty formulation for this problem is

Lr (x , v , y) = f (x) + r
m∑
i=1

(gi (x) + vi )
2 +

m∑
i=1

yi (gi (x) + vi )

Minimizing this in v gives

vi = max

{
0,−2zi

r
− gi (x)

}
Plugging this in and rearranging gives (AL)

f (x) +
1

4r

(
m∑
i=1

max{0, yi + 2r · gi (x)}2 − ‖y‖22

)
= Lr (x , y)

Choosing vi = zi + gi (x) completes the proof.
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Corresponding Dual

The dual function corresponding to the augmented Lagrangian
(AL) is

gr (y) = inf
x∈X

Lr (x , y)

The dual problem is then

d?
r = max

y∈Rm
gr (x , y) (Dr)
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Characterization of ALM Dual Problem

Theorem
For all r > 0, gr (y) is concave and satisfies

gr (y) = max
z∈Rm

{
g0(z)− 1

4r
‖z − y‖2

}
and the problem (Dr) has the same optimal solutions as (D). If g0
is not −∞ everywhere, then gr is finite everywhere and C1.
Additionally, if for a given y there exists x such that
gr (y) = Lr (x , y), then

∂gr (y)

∂yi
= max

{
−yi
2r

, gi (x)

}
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Proof

Proof.
Let

pr (u) , min
x∈X

Fr (x , u)

q(u) ,
1

2
‖u‖2

Note that pr is convex, since Fr is convex and by expanding the
definition of Fr (x , u), we can see that pr (u) = p0(u) + 2rq(u).

Then,

gr (y) = inf
x∈X

Lr (x , y)

= inf
x∈X

min
u∈Rm

(Fr (x , u) + 〈u, y〉)

= inf
u∈Rm

(pr (u) + 〈u, y〉)

= −p?r (−y) (convex conjugate)
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Proof Cont.

Proof.
Therefore,

gr (y) = max
z∈Rm

{
g0(z)− 1

4r
‖z − y‖2

}
Note that the expression g0(z)− 1

4r ‖z − y‖2 is strongly concave,
so the maximal z is unique, and moreover it depends continuously
on y .

Since g0 is not −∞ everywhere, gr (y) is always finite, and
therefore the subgradient is always nonempty.
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Proof Cont.

Proof.
Suppose w ∈ ∂gr (y) and z is the maximal z in the defintion of
gr (y). Then,

g0(z)− 1

4r
‖z − y ′‖2 ≤ g0(z)− 1

4r
‖z − y‖2 + 〈w , y ′ − y〉

Equivalently,

1

4r
‖z − y‖2 + 〈w , y〉 ≤ 1

4r
‖z − y ′‖2 + 〈w , y ′〉

This must be true for all y ′ ∈ Rm, so it follows that w = z−y
2r .

Therefore, the subgradient consists of a single element, so
∇gr (y) = z−y

2r , and therefore gr (y) is continuously
differentiable.
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Proof Cont.

Proof.
Lastly, suppose there exists x such that Lr (x , y) = g(y). Since
Lr (x , y) is concave and differentiable in y , we have that

gr (y ′) ≤ Lr (x , y ′) ≤ Lr (x , y) + 〈∇yLr (x , y), y ′ − y〉
≤ g(y) + 〈∇yLr (x , y), y ′ − y〉

Therefore, ∇yLr (x , y) ∈ ∂gr (y) = {∇gr (y)}.
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Corollary

Corollary

If gr is not −∞ everywhere, then for all y , y ′ ∈ Rm,

gr (y)+〈y−y ′,∇gr (y)〉 ≥ g(y ′) ≥ gr (y)+〈y−y ′,∇gr (y)〉− 1

4r
‖y−y ′‖2

Proof.
The first inequality follows from the fact that gr is concave. For
the second inequality, note that for all y there exists z ∈ Rm and a
quadratic h(y) such that h(y ′) = g0(z)− 1

4r ‖y
′ − z‖2 with

h(y) = gr (y), and h(y ′) ≤ gr (y ′) for all y ′ ∈ Rm. This implies that
∇h(y) = ∇gr (y).

Since h is quadratic, we know that

h(y ′) = h(y) + 〈y − y ′,∇h(y)〉 − 1

4r
‖y ′ − y‖2

= gr (y) + 〈y − y ′,∇gr (y)〉 − 1

4r
‖y ′ − y‖2
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Consequences

I We have shown that gr (y) is (strongly) concave and since
limr↓0 Lr (x , y) = L(x , y), it follows that it shares the same
maximizers as g0(y)

I We have also computed the gradient of the dual function and
shown that it agrees with the gradient of Lr (x , y) in y at the
minimizer in x

I This justifies the construction of the ALM

I After the primal update, the gradients ∇gr (y) and ∇yLr (x , y)
are close since they are both C1 and at the minimizer they are
equal

I The perturbed dual problem (Dr) shares the same minimizers
as the original dual problem (D), so we do not lose any true
solutions or add extraneous solutions from the dual update
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Consequences Cont.

I In fact, any KKT pair for (P) and (D) is also a KKT pair for
Lr (x , y)

I This follows from the above theorem and a very similar proof
as before

I In fact, we have the following theorem

Theorem
Assume that strong duality holds for (P) and (D). Let r > 0 and
y? be a dual optimal solution to (D) (or equivalently to (Dr)).
Then, x? is an optimal solution to (P) if and only if
x? = minx∈X Lr (x , y?) = gr (y?).
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Proof of Optimality Conditions

Theorem
Assume that strong duality holds for (P) and (D). Let r > 0 and
y? be a dual optimal solution to (D) or (Dr). Then, x? is an
optimal solution to (P) if and only if x? = minx∈X Lr (x , y?).

Proof.
The “only if” part is straightforward. Suppose
x? = minx∈X Lr (x , y?). Then x? = gr (y?) by definition of gr (y).
Moreover, it follows that ∇yLr (x?, y?) = ∇gr (y?) = 0, so y?

maximizes Lr (x?, y) in y by strong concavity. Thus, (x?, y?) is a
KKT pair and therefore an optimal solution.

Note that if r = 0 then the set of minimizers of L0(·, y?) may
points which are not the optimal solution to (P).
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Some Definitions

Definition
A maximizing sequence of (Dr) is a sequence {y (k)} ⊆ Rm such
that limk→∞ gr (y (k)) = sup gr .

Definition
A sequence {x (k)} ⊆ X is asymptotically feasible for (P) if
lim supk→∞ gi (x

(k)) ≤ 0 for i = 1, . . . ,m. We define the
asmyptotic optimal value as the infimum of lim supk→∞ f (x (k))
over all asymptotically feasible sequences. A sequence {x (k)} which
converges to this infimum is called asymptotically minimizing.

Remark
The asymptotic optimal value equals the dual optimal value if
d? 6= −∞ or if there an asmyptotically feasible sequence exists.
Therefore, if strong duality holds and (P) is feasible, then {x (k)} is
asymptotically feasible if and only if limk→∞ f (x (k)) = p?.
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Asymptotic Feasiblility

We provide an example of a family of sequences where no sequence
converges to the infimum of the limits.

I Consider {x (k,n)} = 1
k + 1

n

I Define an = limk→∞
(
1
k + 1

n

)
.

I Then, an = 1
n for all n.

I Therefore, infn an = 0, but no sequence in k converges to 0.

I Thus, this family of sequences has no asymptotically
minimizing sequence.
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minimizing sequence.
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Convergence Lemma 1

We begin by proving some lemmas required for convergence

Lemma

r‖∇gr (y (k))‖2 ≤ sup gr − gr (y (k))

Proof.
From the previous theorems, we know that

sup gr ≥ max
y ′∈Rm

{
gr (y (k)) + 〈(y ′ − y (k)),∇gr (y (k))− 1

4r
‖y ′ − y (k)‖2

}

≥ gr (y (k)) + max
u∈Rm

{
〈u,∇gr (y (k))− 1

4r
‖u‖2

}
= gr (y (k)) + r‖∇gr (y (k))‖2
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Convergence Lemma 2

Lemma
Suppose the asymptotic optimal value in (P) is finite. Let {y (k)}
be a bounded maximizing sequence for (Dr) with r > 0. Suppose
for each x (k) ∈ X

Lr (x (k), y (k))− inf
x∈X

Lr (x , yk) = Lr (x (k), y (k))− gr (y (k)) ≤ α(k)

where α(k) → 0. Then

r‖∇yLr (x (k), y (k))−∇gr (y (k))‖2 ≤ α(k)
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Proof of Convergence Lemma

Proof.
Using the corollary proved earlier, we have that

Lr (x (k), y (k)) +
〈
w − y (k),∇yLr (x (k), y (k))

〉
≥ Lr (x (k),w)

≥ gr (w)

≥ gr (y (k)) + 〈w − y (k),∇ygr (y (k))〉 − 1

4r
‖w − y (k)‖2

Therefore,

α(k) ≥ Lr (x (k), y (k))− gr (y (k))

≥ sup
u∈Rm

{〈
u,∇gr (y (k))−∇yLr (x (k), y (k))

〉
− 1

4r
‖u‖2

}
= r‖∇gr (y (k))−∇yLr (x (k), y (k))‖2
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Convergence Theorem

Theorem
Suppose the asymptotic optimal value in (P) is finite. Let {y (k)}
be a bounded maximizing sequence for (Dr) with r > 0. Suppose
for each x (k) ∈ X

Lr (x (k), y (k))− inf
x∈X

Lr (x , yk) = Lr (x (k), y (k))− gr (y (k)) ≤ α(k)

where α(k) → 0. Then {x (k)} is an asymptotically maximizing
sequence for (P).
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Proof of Convergence

From earlier theorems we know that

Lr (x (k), y) = min
u∈Rm

{
F0(x (k), u) + 〈u, y〉+ r‖u‖2

}
where

Fr (x , u) =

{
f (x) + r‖u‖2 if ui ≥ gi (x), i = 1, . . . ,m

+∞ otherwise

For fixed y = y (k), the minimum is unique, denoted as u(k).
Therefore, for all y ∈ Rm,

Lr (x (k), y) ≤ F0(x (k), u(k)) + 〈u(k), y〉+ r‖u(k)‖2

and equality holds when y = y (k).
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Proof of Convergence 2

Therefore, for all y ∈ Rm,

Lr (x (k), y) ≤ F0(x (k), u(k)) + 〈u(k), y〉+ r‖u(k)‖2

and equality holds when y = y (k). Therefore,

u(k) = ∇yLr (x (k), y (k))

This implies that u(k) → 0.

To see this, note that by hypothesis

lim
k→∞

Lr (x (k), y (k)) = lim
k→∞

gr (y (k)) = sup gr



37/41

Proof of Convergence 2

Therefore, for all y ∈ Rm,

Lr (x (k), y) ≤ F0(x (k), u(k)) + 〈u(k), y〉+ r‖u(k)‖2

and equality holds when y = y (k). Therefore,

u(k) = ∇yLr (x (k), y (k))

This implies that u(k) → 0. To see this, note that by hypothesis

lim
k→∞

Lr (x (k), y (k)) = lim
k→∞

gr (y (k)) = sup gr



38/41

Proof of Convergence 3

To see this, note that by hypothesis

lim
k→∞

Lr (x (k), y (k)) = lim
k→∞

gr (y (k)) = sup gr

Since {y (k)} is bounded, we have that

lim
k→∞

F0(x (k), u(k)) = lim
k→∞

(
Lr (x (k), y (k))− 〈u(k), y (k)〉 − r‖u(k)‖2

)
= sup gr
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Remarks

I We can see that the ALM does indeed converge under some
mild assumptions.

I However, we did not discuss actual implementations of this
method, especially how to solve the subproblem for the primal
update

I Also, we did not discuss the rate of convergence of the ALM,
although this can be found in Rockafellar [2] or Ruszczyński
[4, Theorem 6.16]
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Conclusion

I The augmented Lagrangian method (ALM) provides a
powerful way to deal with constrained optimization problems
– even in the nonsmooth case (but we did not cover this)

I We can see the inspiration comes from analyzing the primal
and dual problems and attempting to find a pair which
satisfies the KKT conditions.

I The ALM is of particular interest in conic optimization,
especially for semidefinite programs since it may be an
alternative to interior-point methods

I Also, the ALM is not the only primal-dual method, a notable
one is the alternating direction method of multipliers (ADMM)
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