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Refresh

Last time, we introduced a variety of conditions for interpolating a
convex function through a set of points with given (sub)gradients.

Now, we can look at applying our knowledge to a few different
algorithms.
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Setting

Given a matrix A ∈ Rn×n(Cn×n), we say that A is symmetric
(Hermitian) if A = A⊤(AH). Hermitian matrices have a very
important characterization, known as the Spectral Theorem.

Theorem (Spectral Theorem)
Suppose we have a matrix A ∈ Cn×n. Then, A is symmetric if and
only if it can be written as A = PDPH , where P is unitary and D
is a diagonal matrix with the eigenvalues of A on the diagonal.
Moreover, the eigenvalues of A are real, and if A is real then P is
real.
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Proof of the Spectral Theorem

Proof.
One direction is easy to show. If A = PDPH , then
AH = (PDPH)H = PDPH , and if P is real then PH = P⊤, so A is
real.

Now, suppose that A is Hermitian. Then, let λ be an eigenvalue of
A and v be an eigenvector associated with λ. Then,

λ⟨v , v⟩ = ⟨λv , v⟩ = ⟨Av , v⟩ = ⟨v , AHv⟩ = ⟨v , Av⟩ = ⟨v , λv⟩

= λ⟨v , v⟩.

Therefore, λ = λ, so λ is real.
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Proof of the Spectral Theorem (Cont.)

Proof.
Now, we note that the eigenspace span{v} = Vλ is A-invariant.
Therefore, its orthogonal complement, V ⊥

λ is also A-invariant,
since A is Hermitian. Viewing A as a linear operator, we can see
that if we induct on the dimension of the ambient vector space, we
have an orthonormal basis of eigenvectors of V ⊥

λ , and joining this
with {v} gives an orthonormal basis.
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Semidefinite Matrices

The spectral theorem leads us to the fundamental object of
semidefinite programming: symmetric positive semidefinite
matrices. We denote the vector space of real symmetric n × n
matrices by Sn.

Definition (Positive Semidefinite Matrix)
A matrix A ∈ Sn is positive semidefinite if for any nonzero vector
v ∈ Rn:

⟨Av , Av⟩ ≥ 0.

If the inequality is strict, then A is positive definite. We denote
the set of positive semidefinite matrices by Sn

+, and the set of
positive definite matrices by Sn

++.
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Semidefinite Program

Definition
A semidefinite program is a problem of the form

p⋆ = min
X∈Sn

⟨C , X ⟩

subject to ⟨Ak , X ⟩ = bk k = 1, . . . , m
X ⪰ 0.

This is known as the primal problem.

The dual semidefinite
program is

d⋆ = max
y∈Rm

⟨b, y⟩

subject to C −
m∑

i=1
yiAi ⪰ 0.
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Important Properties of Semidefinite Programs

We have the following:

⟨C , X ⟩ − ⟨b, y⟩ = ⟨C , X ⟩ −
m∑

i=1
biyi

= ⟨C , X ⟩ −
m∑

i=1
biyi

= ⟨C , X ⟩ −
m∑

i=1
yi⟨Ai , X ⟩

=
〈

C −
m∑

i=1
yiAi , X

〉
≥ 0

So p⋆ ≥ d⋆.
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Performance Estimation Problem

We are interested in the worst-case performance of first-order
methods. Given a method M, and performance measure E , a class
of functions F , and some intial conditions C, we are interested in
the worst performance of M:

sup
f ∈F

E ({xi , fi , gi}i=1,...,N,⋆)

such that f ∈ F
x⋆ is optimal
{xi , fi , gi}i=1,...,N,⋆ are generated by M
(x0, f0, g0) satisfy the initial conditions C

We will show that a large class of optimization problems can be
cast in this form, including standard (sub)gradient descent,
proximal point, and even some constrained optimization problems.
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SDP Reformulation

Our goal is to show that the PEP, for many classes of functions
and methods, can we written in the form

sup
FN∈R1×(N+2),GN∈S2(N+1)

c⊤FN + ⟨C , GN⟩

subject to ai + b⊤
i FN + ⟨Di , GN⟩ ≤ 0 i = 1, . . . k

Gn ⪰ 0
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Fixed-Step Linear First-Order Method

Definition
A fixed-step linear first-order method (FSLFOM) is a method
which produces iterates as the solution to

ti ,ixi + hi ,igi =
i−1∑
j=0

(ti ,jxj + hi ,jgj) ,

where the step size coefficients ti ,j and hi ,j are fixed.

We note here that this class of methods is exactly those which can
be written as

xi = arg min
x∈Rn

 ti ,i
2 ∥x∥2 + hi ,iF (x) −

〈i−1∑
j=0

(ti ,jxj + hi ,j∇F (xj)) , x
〉

Pranav Reddy SOC Reading Group



Introduction Linear Algebra Refresher Performance Estimation PPA Analysis References

Fixed-Step Linear First-Order Method

Definition
A fixed-step linear first-order method (FSLFOM) is a method
which produces iterates as the solution to

ti ,ixi + hi ,igi =
i−1∑
j=0

(ti ,jxj + hi ,jgj) ,

where the step size coefficients ti ,j and hi ,j are fixed.

We note here that this class of methods is exactly those which can
be written as

xi = arg min
x∈Rn

 ti ,i
2 ∥x∥2 + hi ,iF (x) −

〈i−1∑
j=0

(ti ,jxj + hi ,j∇F (xj)) , x
〉

Pranav Reddy SOC Reading Group



Introduction Linear Algebra Refresher Performance Estimation PPA Analysis References

SDP Reformulation of FSLFOM

Our goal is to reformulate a given FSLFOM as the constraints of a
semidefinite program.

We define the matrices PN ∈ Rd×2(N+1) and FN ∈ R1×(N+2) as

PN = [x0 . . . xN x⋆ | g0 . . . gN g⋆]

FN = [f0 . . . fN f⋆].

Using this, we define GN ∈ S2(N+1) by

Gn = P⊤
N PN ⪰ 0.

Note that rank GN ≤ d .
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SDP Reformulation of FSLFOM (Cont.)

We can see that the definition of a FSLFOM is a system of linear
equations that depends only on the coordinate and subgradients up
to a given iterate. Therefore, we can write this as

Pnmi = 0,

where mi is some vector of coefficients and the coefficients
corresponding to future coordinate and subgradient values are zero.

Then,

Pnmi = 0 ⇐⇒ ∥Pnmi∥2 = 0 ⇐⇒ m⊤
i Gnmi = 0,

so we have an equivalent semidefinite constraint.
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SDP Reformulation of FSLFOM (Example)

For example, for simple gradient descent,

xi = xi−1 − h∇F (xi−1),

we can write this as

0 = xi−1 − h∇F (xi−1) − xi .

So mi is simply the vector such that the ith and (i − 1)th entry
entry are 1, the (N + i)th entry is h, and every other entry is 0.
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SDP Reformulation of FSLFOM (Example 2)

A more interesting example is the proximal point algorithm, which
computes

xi = arg min
x

{
hiF (x) + 1

2∥x − xi−1∥2
}

.

By first-order optimality conditions, this can be rewritten as

hi∇F (xi) + xi − xi−1 = 0,

which is an implicit linear equation for xi , so it can be fitted into
the FSLFOM framework, and therefore can be represented by a
semidefinite constraint.
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PPA Classic Result

As an example, we will improve the classical result on convergence
of the proximal point algorithm (PPA) using the PEP.

Theorem (Classical Result)
Let F be a convex function, and let x⋆ be a minimizer. If
∥x0 − x⋆∥ ≤ R, then after N steps of the PPA, we have

F (xN) − F (x⋆) ≤ R2

2
∑N

k=1 hk
.
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Tight Bound on PPA

Theorem (New Result)
In fact, we have

F (xN) − F (x⋆) ≤ R2

4
∑N

k=1 hk
,

and this bound is tight.
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Proof of Tightness

Proof.
First, by consider the one-dimensional function

F (x) = R|x |
2

∑N
k=1 hk

,

and the initial point x = −R.

After N iterations of PPA, we have

xN = x0 +
N∑

k=1
hk

R
2

∑N
k=1 hk

= −R
2 .
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Proof of Tightness Continued

Proof.
We can see that

f (xN) = R2

4
∑N

k=1 hk
,

and since f (x⋆) = 0, we have the desired equality.
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Proof of Upper Bound

First, we need to define our problem in terms of the PEP, so we
must define F , E , M, and C:
▶ E = f (xN) − f (x⋆)

▶ F = F0,∞, closed proper convex functions

▶ M = proximal point algorithm

▶ C = {∥x0 − x⋆∥ ≤ R}
Additionally, we can assume without loss of generality that
F (x⋆) = 0 and x⋆ = 0.
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Reformulating E

We can see that f (xN) − f (x⋆) can be rewritten as a linear
combination of the columms of the matrix FN :

f (xN) − f (x⋆) = (eN − eN+1)⊤FN = ⟨eN − eN+1, FN⟩

and this is a semidefinite objective.
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Reformulating F and M

From the the previous presentation, we have that a set of point is
F0,∞-interpolable if and only if the

(N
2
)

linear inequalities

fi − fj − ⟨gj , xi − xj⟩ ≥ 0 ∀ i , j ∈ {1, . . . , N, ⋆}.

We will combine the conditions on F and M to simplify the PEP
considerably. Using mi and mj such that xk = Pnmk , we have that

mk = eN+1 −
k∑

i=1
hiei ,

with m0 = eN+1 and m⋆ = 0.
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Reformulating F and M (Cont.)

Define
Aij = 1

2
(
ej(mi − mj)⊤ + (mi − mj)e⊤

j

)
where e⋆ = 0. Then, the constraints given by F and C become

fi − fj + ⟨AijGN⟩ ≤ 0 ∀ i , j ∈ {1, . . . , N, ⋆}

This is all we need to fully reformulate the PEP to prove the better
upper bound, since we have shown for the PPA:

xk = xk−1 − hk∇F (xk).
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Reformulated PEP

Using the previous inequalities, the PEP becomes

max
FN∈R1×(N+2),GN∈S2(N+1)

⟨eN − eN+1, FN⟩

subject to ⟨ei − ej+1, FN⟩ + ⟨Aij , GN⟩ ≤ 0 i , j = 1, . . . , N, ⋆

rank GN ≤ d
∥x0 − x⋆∥ ≤ R2

Gn ⪰ 0

Here, we make the additional assumption that d ≥ N + 2
(although this is not necessary, see [1]).
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Constructing an Upper Bound

We will take the dual of this problem to generate an upper bound
on the PEP:

min
λij ≥0,τ≥0

τR2

subject to eN −
∑

i

∑
j ̸=i

(λij − λji)ej = 0

∑
i

∑
j ̸=i

λijAij + τm0m⊤
0 ⪰ 0
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Constructing an Upper Bound (Cont.)

We will choose the following multipliers to build a dual feasible
solution:

λi ,i+1 =
∑i

k=1 hk

2
∑N

k=1 hk −
∑i

k=1 hk
i = 1, . . . , N − 1

λ⋆,i = 2hi
∑N

k=1 hk

(2
∑N

k=1 hk −
∑i

k=1 hk)(2
∑N

k=1 hk −
∑i−1

k=1 hk)
i = 1, . . . , N

τ = 1
4

∑N
k=1 hk

λij = 0 otherwise

Verifying the feasibility of this choice will not be done here.
Therefore, R2

4
∑N

k=1 hk
is an upper bound on the primal problem, and

therefore an upper bound on the performance of the PPA.
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