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Goals

1. Introduce the setting of distributed optimization

2. Understand the importance of consensus

3. Introduce and prove convergence of different first-order
methods

4. Understand limitations of distributed optimization

5. Discuss future directions
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What is Distributed Optimization?

Consider the problem

min
x∈Rd

1
N

N∑
i=1

fi(x)

where f1, . . . , fN are L-smooth, G-Lipschitz convex functions.

We can rewrite this as

min
x1,...,xN∈Rd

1
N

N∑
i=1

fi(xi)

s.t. x1 = x2 = · · · = xN

The error in satisfying the constraint x1 = · · · = xN is called the
consensus error.
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Applications: Machine Learning

Suppose agents 1, 2, . . . , N have collected sets D1, . . . , DN of
labeled data for supervised learning. If we have cost function
Li(θ; d), which measures the loss on data sample d ∈ Di , each
agent wishes to minimize

fi(θ) =
∑

d∈Di

Li(θ; d).

If, say due to computational constraints or privacy concerns, each
agent is unwilling to share their data to a central server, the model
must learn via coordination. We can formulate this in the
distributed optimization framework as

min
θ1,...,θN∈Rd

1
N

N∑
i=1

fi(θi)

s.t. θ1 = · · · = θN
Pranav Reddy SOC Reading Group Meeting 25 September 2024
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Applications: State Estimation

Consider a moving object whose state has dynamics

x(t + 1) = A(t)x(t) + w(t),

where w(t) N (0, W ) is a sequence of i.i.d. noise for some
covariance matrix W ≻ 0. Suppose we have N drones with a given
communication network, where drone i observes the object
according to

yi(t) = Ci(t)x(t) + vi(t),

where vi(t) N (0, W ) is a sequence of i.i.d. noise for some
covariance matrix Vi ≻ 0.
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Applications: State Estimation 2

Suppose the network observes the object from t = 0 to t = T , and
drone i observes the object at times Ti ⊆ {0, . . . , T}, and collects
the observed data {yi(t) : t ∈ Ti}. Assuming that A(t), W , and
the distribution of the initial state x(0) ∼ N (x̄(0), P(0)), drone i
knows Ci(t) and Vi , the drones can estimate the trajectory
(x(0), . . . , x(T )) of the target by solving

min
x̂1,...,x̂T ∈Rd

∥x̂(0) − x̄(0)∥2
P(0)−1 +

T∑
t=1

∥x̄(t) − A(t)x̄(t − 1)∥2
W −1

+
N∑

i=1

∑
t∈Ti

∥yi(t) − Ci(t)x̂(t)∥2
V −1

i
.

Then, let fi(x̂1, . . . , x̂T ) = ∥x̂(0) − x̄(0)∥2
P(0)−1 +

∑T
t=1 ∥x̄(t) −

A(t)x̄(t − 1)∥2
W −1 + N

∑
t∈Ti ∥yi(t) − Ci(t)x̂(t)∥2

V −1
i

.
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Graph Theory Basics 1

Definition
A graph is a pair G = (V , E ) of sets, called vertices and edges,
where E ⊆ V × V .

▶ In the distributed context, vertex i represents an agent, with
its local cost function fi : Rd → R and local variable xi ∈ Rd .

▶ Edge (i , j) implies that there is a communication line between
agents i and j , so agents i and j are able to communicate.

▶ We assume that for any pair of agents i and j , there exists a
sequence of edges (i , i1), (i1, i2), . . . , (ik , j), starting with i and
ending with j .

▶ This property is known as connectedness.

▶ We also assume that if (i , j) ∈ E then (j , i) ∈ E . This means
all communication is bidirectional.

▶ A graph with this property is called undirected.
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Graph Theory Basics 2

▶ The structure of the graph plays a large role in convergence of
distributed algorithms. Highly connected graphs are more
favorable, but in practical contexts, maintaining such a
communication network can be difficult or expensive.

▶ We will show that as long as the network is connected and
undirected, both averaging and first-order methods can
achieve consensus, although this will be sensitive to graph
structure.
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Distributed Averaging 1

Firstly, note that if {wij}i ,j=1,...,N are nonnegative, then for a
convex function f ,

f
(∑N

j=1 wijxj∑N
j=1 wij

)
≤
∑N

j=1 wij f (xj)∑N
j=1 wij

.

Thus, an averaging protocol seems to be an appropriate choice for
satisfying the consensus constraint x1 = · · · = xN .
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Distributed Averaging 2

In practice, the communication network is known beforehand and
unchangeable. Then, we must ask how to construct the averaging
weights wij in a satisfactory manner and how to use them.

Definition
The distributed averaging method is defined by

xi(t + 1) =
N∑

j=1
wijxj(t), i = 1, . . . , N.

However, a naive implementation runs some risks.
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Distributed Averaging 3

We have some requirements for the method:
1. The weights should be compatible with the topology of the

network: if (i , j) is not an edge, then wij = 0.
2.
∑N

j=1 wij = 1. This ensures that if x1(t) = . . . xN(t), then
xi(t + 1) = xi(t). That is, the mean is a stationary point of
the algorithm.

3.
∑N

i=1 wij = 1. This ensures that the mean is unchanged
during the algorithm.

To see the third point, note that

1
N

N∑
i=1

xi(t + 1) = 1
N

N∑
i=1

N∑
j=1

wijxj(t) = 1
N

N∑
j=1

xj(t)
N∑

i=1
wij

= 1
N

N∑
j=1

xj(t).

Pranav Reddy SOC Reading Group Meeting 25 September 2024



12/34

Introduction Preliminaries Distributed Averaging First-Order Methods Conclusion References

Distributed Averaging 3

We have some requirements for the method:
1. The weights should be compatible with the topology of the

network: if (i , j) is not an edge, then wij = 0.
2.
∑N

j=1 wij = 1. This ensures that if x1(t) = . . . xN(t), then
xi(t + 1) = xi(t). That is, the mean is a stationary point of
the algorithm.

3.
∑N

i=1 wij = 1. This ensures that the mean is unchanged
during the algorithm.

To see the third point, note that

1
N

N∑
i=1

xi(t + 1) = 1
N

N∑
i=1

N∑
j=1

wijxj(t) = 1
N

N∑
j=1

xj(t)
N∑

i=1
wij

= 1
N

N∑
j=1

xj(t).

Pranav Reddy SOC Reading Group Meeting 25 September 2024



13/34

Introduction Preliminaries Distributed Averaging First-Order Methods Conclusion References

Distributed Averaging 4

We want to analyze the convergence speed of the distributed
averaging method. To do this, we need to rearrange the variables
into a simpler form. Let

X (t) =
[
x1(t) . . . xN(t)

]⊤
∈ RN×d ,

and therefore the iterations can be written as

X (t + 1) = WX (t).

where W = [wij ] is the matrix of weights. We note that
W ⊤1 = W 1 = 1, where 1 is the vector with 1 in every entry.
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Distributed Averaging 5

We note that the error can be represented as

E (t) =

(x1(t) − x̄)⊤

...
(xN(t) − x̄)⊤

 = X (t) − 1x̄⊤ =
(

I − 1
N 11⊤

)
X (t).

Then,

E (t + 1) =
(

I − 1
N 11⊤

)
X (t + 1) =

(
I − 1

N 11⊤
)

WX (t)

=
(

W − 1
N 11⊤W

)
X (t)

=
(

W − 1
N 11⊤

)
X (t)
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Distributed Averaging 6

Additionally, note that(
W − 1

N 11⊤
)(

I − 1
N 11⊤

)
= W − 1

N 11⊤ − 1
N W 11⊤ + 1

N2 11⊤11⊤

= W − 1
N 11⊤.

Thus,

E (t + 1) =
(

W − 1
N 11⊤

)
X (t)

=
(

W − 1
N 11⊤

)(
I − 1

N 11⊤
)

X (t)

=
(

W − 1
N 11⊤

)
E (t).
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Convergence of Distributed Averaging

Thus, if we use the inequality ∥AB∥F ≤ ∥A∥2∥B∥F , we find that

∥E (t + 1)∥2
F ≤

∥∥∥∥W − 1
N 11⊤

∥∥∥∥2

2
∥E (t)∥2

F .

Thus, we obtain the following theorem:

Lemma ([1, Theorem 2.1])

Let G be a connected undirected graph, and we associate it with a
nonnegative doubly stochastic matrix W . Suppose
σ :=

∥∥∥W − 1
N 11⊤

∥∥∥
2

< 1. Then, the consensus error converges to
zero exponentially fast, i.e, we have

1
N

N∑
i=1

∥xi(t) − x̄∥2 ≤ σ2t · 1
N

N∑
i=1

∥xi(0) − x̄∥2.
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Discussion of Distributed Averaging

▶ The distributed averaging method converges very quickly, and
we know that for common choices of σ, σ ≤ 1 − 1

N2 , and this
bound is tight.
▶ This implies that for very large graphs, σ could be very close

to 1, resulting in very slow convergence.
▶ It is possible to speed this up even further, but to my

knowledge this only reduces the dependence on σ, not the
asymptotic convergence rate.

▶ We have also not discussed how to construct the weight
matrix W , and whether it is always possible to construct a
double stochastic matrix W with ∥W − 1

N 11⊤∥2 < 1.
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Other Useful Notes

Theorem
Suppose W is a doubly stochastic matrix: Wij ≥ 0, and
W 1 = W ⊤1 = 1. Also assume that Wii > 0 and Wij > 0 if and
only if i and j are adjacent in the graph G. Then,∥∥∥∥W − 1

N 11⊤
∥∥∥∥

2
< 1

The proof of this uses the Perron-Frobenius theorem, which is an
important result from graph theory, but we will not cover it here.
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Decentralized Computation of Weights

The previous theorem implies that each agent can choose its own
weights without knowing anything about the total structure of the
graph. One such choice is known as the Metropolis weights,

wij =


1

max{deg(i),deg(j)}+ε , (i , j) ∈ E
0, (i , j) /∈ E
1 −

∑
k ̸=i Wik , i = j ,

where deg(i) is the degree of vertex i , the number of neighbors it
has and ε > 0 is any positive real number.
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Constructing the Optimal Weight Matrix

We want to solve the problem

min
W ∈RN×N

∥∥∥∥W − 1
N 11⊤

∥∥∥∥
2

s.t. Wij = 0, (i , j) /∈ E and i ̸= j
W 1 = W ⊤1 = 1.

This is a convex problem, but in general it is nonsmooth. We need
to transform this into a form that is easier to solve.

Pranav Reddy SOC Reading Group Meeting 25 September 2024



21/34

Introduction Preliminaries Distributed Averaging First-Order Methods Conclusion References

Reformulating the Weight Matrix Problem

To begin, note that∥∥∥∥∥W + W ⊤

2 − 1
N 11⊤

∥∥∥∥∥
2

=

∥∥∥∥∥∥W + 1
N 11⊤

2 +
(

W + 1
N 11⊤

2

)⊤
∥∥∥∥∥∥

2

≤ 1
2

∥∥∥∥W − 1
N 11⊤

∥∥∥∥
2

+ 1
2

∥∥∥∥∥
(

W − 1
N 11⊤

)⊤
∥∥∥∥∥

2

=
∥∥∥∥W − 1

N 11⊤
∥∥∥∥

2
.

Moreover, due to the undirectedness of the graph G , both W and
W ⊤ are compatible with the graph, so without loss of generality
we can assume W to be symmetric.
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Semidefinite Representation

Thus, we can reformulate the original problem as

min
W ∈RN×N

s∈R

s

s.t. Wij = 0, (i , j) /∈ E and i ̸= j
W 1 = W ⊤1 = 1

− sI ⪯ W − 1
N 11⊤ ⪯ sI

In the case where we have a directed graph, we cannot assume W
to be symmetric. Instead, we can use Schur complement to

formulate the last constraint as
[

sI W − 1
N 11⊤

W ⊤ − 1
N 11⊤ sI

]
⪰ 0

instead.
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Semidefinite Representation

Thus, we can reformulate the original problem as

min
W ∈RN×N

s∈R

s

s.t. Wij = 0, (i , j) /∈ E and i ̸= j
W 1 = W ⊤1 = 1

− sI ⪯ W − 1
N 11⊤ ⪯ sI

In the case where we have a directed graph, we cannot assume W
to be symmetric. Instead, we can use Schur complement to

formulate the last constraint as
[

sI W − 1
N 11⊤

W ⊤ − 1
N 11⊤ sI

]
⪰ 0

instead.
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Naive Distributed Gradient Descent

We can now propose our first distributed algorithm. The proposed
algorithm is simple:

yi(t + 1, 0) = xi(t) − η∇fi(xi(t))

yi(t + 1, k + 1) =
N∑

j=1
wijyi(t + 1, k), k = 1, . . . , Kt+1

xi(t + 1) = yi(t + 1, Kt+1).

In essence, we take a gradient step, then run the consensus to
bring the iterates close together again. The goal is to ensure that
∥∇fi(xi(t)) − ∇fi(x̄(t))∥ is very small.
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First Observations

Define

ε(t) = 1
N

N∑
i=1

(∇fi(xi(t)) − ∇fi(x̄(t))).

We find that we have two key relations:

x̄(t + 1) = x̄(t) − η(∇f (x̄(t)) + ε(t)),

E (t + 1) =
(

W − 1
N 11⊤

)Kt+1 (
I − 1

N 11⊤
) (x1(t) − η∇f1(x1(t)))⊤

...
(xN(t) − η∇fN(xN(t)))⊤

 .
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Proof of Convergence 2

Also, if each fi is L-smooth, then

∥ε(t)∥2 ≤ 1
N

N∑
i=1

∥∇fi(xi(t)) − ∇fi(x̄(t))∥2

≤ 1
N

N∑
i=1

L2∥xi(t) − x̄(t)∥2

= L2

N ∥E (t)∥2
F .
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Proof of Convergence 3

Now, we need to relate E (t + 1) to E (t), and we first note∥∥∥∥∥∥∇fi(xi(t)) − 1
N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
≤ ∥∇fi(xi(t)) − ∇fi(x̄(t))∥ + ∥∇fi(x̄(t)) − ∇f (x̄(t))∥

+

∥∥∥∥∥∥ 1
N

N∑
j=1

∇fj(x̄(t)) − 1
N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
≤ L∥xi(t) − x̄(t)∥ + 2G + 1

N

N∑
j=1

L∥xj(t) − x̄(t)∥
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Proof of Convergence 4

Then,∥∥∥∥∥∥∥
(

I − 1
N 11⊤

) (x1(t) − η∇f1(x1(t)))⊤

...
(xN(t) − η∇fN(xN(t)))⊤


∥∥∥∥∥∥∥

2

F

=
N∑

i=1

∥∥∥∥∥∥xi(t) − x̄(t) − η

∇fi(xi(t)) − 1
N

N∑
j=1

∇fj(xj(t))

∥∥∥∥∥∥
2

≤
N∑

i=1

(1 + ηL)∥xi(t) − x̄(t)∥ + 2ηG + ηL
N

N∑
j=1

∥xj(t) − x̄(t)∥

2
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Proof of Convergence 5

N∑
i=1

(1 + ηL)∥xi(t) − x̄(t)∥ + 2ηG + ηL
N

N∑
j=1

∥xj(t) − x̄(t)∥

2

=

∥∥∥∥∥∥∥
(

(1 + ηL)I + ηL
N 11⊤

)∥x1(t) − x̄(t)∥
...

∥xN(t) − x̄(t)∥

+ 2ηG1

∥∥∥∥∥∥∥
2

≤

∥∥∥∥(1 + ηL)I + ηL
N 11⊤

∥∥∥∥
2

∥∥∥∥∥∥∥
∥x1(t) − x̄(t)∥

...
∥xN(t) − x̄(t)∥


∥∥∥∥∥∥∥+ 2η

√
NG


2

≤ ((1 + 2ηL)∥E (t)∥F + 2η
√

NG)2.
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Proof of Convergence 6

Thus,

∥E (t + 1)∥F ≤ σKt+1(1 + 2ηL)∥E (t)∥F + 2η
√

NG)2.

This gives the following result:

Theorem
Consider the problem minx∈Rd

1
N
∑N

i=1 fi(x), where f1, . . . , fN are
L-smooth, G-Lipschitz, convex functions.
For the naive distributed gradient descent algorithm, with
η ∈ (0, 1

L ] and Kt ≥
⌈

ln(4(t+1)2+12)
− ln σ

⌉
, we have

∥E (t)∥F ≤ 2NηG
(t + 1)2
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Proof of Convergence 7

To analyze the function values, we will use a result that simplifies
lengthy analysis:

Theorem
Let f : Rd → R be convex and L-smooth. Consider the iterations

x(t + 1) = x(t) − η(∇f (x(t)) + e(t)),

where η ∈ (0, 1
L ]. Then,

f
(

1
t

t∑
τ=1

x(τ)
)

− f (x⋆) ≤ 1
2ηt

(
∥x(0) − x⋆∥ +

t−1∑
τ=0

η∥e(τ)∥
)2

.
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Proof of Convergence 8

To show that this results in convergence, note that

t−1∑
τ=0

η∥ε(t)∥ ≤
t−1∑
τ=0

ηL
N ∥E (t)∥F ≤ 2η2LG

t−1∑
τ=0

1
(τ + 1)2 ≤ 4η2LG .

Thus,

f
(

1
t

t∑
τ=1

x(τ)
)

− f (x⋆) ≤ 1
2ηt

(
∥x(0) − x⋆∥ + 4η2LG

)2
.
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Discussion

▶ In this algorithm, agent i must do Kt · deg(i) communications
per iteration, in addition to a gradient step.

▶ Although we recover the O(1
t ) convergence rate of centralized

gradient descent, the communication cost could be
prohibitively high if the graph is unfavorable.

▶ Ideally, we would like to bypass the need for excessive
communication between agents and instead do more gradient
steps, since that is the main objective

▶ Slower convergence of consensus error is acceptable, because
we can run the consensus algorithm after the iterations, and
this converges extremely quickly.
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Conclusion

▶ We have introduced the setting of distributed optimization,
and seen situations where such a framework is useful.

▶ We also discussed the feature of consensus error, which
distinguishes distributed optimization from its centralized
counterpart

▶ We proved the convergence of one naive algorithm for
distributed optimization, as well as discussed its limitations.

▶ There are much more advanced and preferable algorithms,
some of which incorporate addition internal dynamics to offset
the negative effects of consensus error on the gradient
updates.

▶ A key takeaway is that distributed first-order algorithms are
theoretically similar to inexact first-order methods, where
controlling the inexactness is needed to ensuring convergence.
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