Two Algorithms for Smooth Distributed Convex Optimization

Pranav Reddy 27 November 2024

SOC Reading Group Meeting 27 November 2024

Pranav Reddy

Overview

Introduction

Distributed Gradient Descent Convergence Error Objective Gap Discussion

Gradient Tracking Discussion

Pranav Reddy

1. Discuss gradient-based methods for smooth distributed convex optimization

- 1. Discuss gradient-based methods for smooth distributed convex optimization
- 2. Compare the advantages and disadvantages of different methods

Goals

- 1. Discuss gradient-based methods for smooth distributed convex optimization
- 2. Compare the advantages and disadvantages of different methods
- 3. Compare the distributed and centralized settings, and understand the differences

Recall the problem

$$\min_{x\in\mathbb{R}^d}\frac{1}{N}\sum_{i=1}^N f_i(x)$$

where f_1, \ldots, f_N are *L*-smooth, *G*-Lipschitz convex functions.

Recall the problem

$$\min_{x\in\mathbb{R}^d}\frac{1}{N}\sum_{i=1}^N f_i(x)$$

where f_1, \ldots, f_N are *L*-smooth, *G*-Lipschitz convex functions. We can rewrite this as

$$\min_{\substack{x_1,\ldots,x_N \in \mathbb{R}^d \\ \text{s.t.}}} \frac{1}{N} \sum_{i=1}^N f_i(x_i)$$
$$x_1 = x_2 = \cdots = x_N$$

Pranav Reddy

Recall the problem

$$\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N f_i(x)$$

where f_1, \ldots, f_N are *L*-smooth, *G*-Lipschitz convex functions. We can rewrite this as

$$\min_{\substack{x_1,\ldots,x_N \in \mathbb{R}^d \\ \text{s.t.}}} \frac{1}{N} \sum_{i=1}^N f_i(x_i)$$

The error in satisfying the constraint $x_1 = \cdots = x_N$ is called the **consensus error**. We usually measure $E = \sum_{k=1}^{N} ||x_k - \bar{x}||_2^2$.

Definition

A graph is a pair G = (V, E) of sets, called vertices and edges, where $E \subseteq V \times V$.

▶ In the distributed context, vertex *i* represents an agent, with its local cost function $f_i : \mathbb{R}^d \to \mathbb{R}$ and local variable $x_i \in \mathbb{R}^d$.

Definition

A graph is a pair G = (V, E) of sets, called vertices and edges, where $E \subseteq V \times V$.

- ▶ In the distributed context, vertex *i* represents an agent, with its local cost function $f_i : \mathbb{R}^d \to \mathbb{R}$ and local variable $x_i \in \mathbb{R}^d$.
- Edge (i, j) implies that there is a communication line between agents i and j, so agents i and j are able to communicate.

Definition

A graph is a pair G = (V, E) of sets, called vertices and edges, where $E \subseteq V \times V$.

- ▶ In the distributed context, vertex *i* represents an agent, with its local cost function $f_i : \mathbb{R}^d \to \mathbb{R}$ and local variable $x_i \in \mathbb{R}^d$.
- Edge (i, j) implies that there is a communication line between agents i and j, so agents i and j are able to communicate.
- ► We assume that for any pair of agents *i* and *j*, there exists a sequence of edges (*i*, *i*₁), (*i*₁, *i*₂), ..., (*i*_k, *j*), starting with *i* and ending with *j*.

Definition

A graph is a pair G = (V, E) of sets, called vertices and edges, where $E \subseteq V \times V$.

- ▶ In the distributed context, vertex *i* represents an agent, with its local cost function $f_i : \mathbb{R}^d \to \mathbb{R}$ and local variable $x_i \in \mathbb{R}^d$.
- Edge (i, j) implies that there is a communication line between agents i and j, so agents i and j are able to communicate.
- ► We assume that for any pair of agents *i* and *j*, there exists a sequence of edges (*i*, *i*₁), (*i*₁, *i*₂), ..., (*i*_k, *j*), starting with *i* and ending with *j*.
 - This property is known as **connectedness**.

Definition

A graph is a pair G = (V, E) of sets, called vertices and edges, where $E \subseteq V \times V$.

- ▶ In the distributed context, vertex *i* represents an agent, with its local cost function $f_i : \mathbb{R}^d \to \mathbb{R}$ and local variable $x_i \in \mathbb{R}^d$.
- Edge (i, j) implies that there is a communication line between agents i and j, so agents i and j are able to communicate.
- ► We assume that for any pair of agents *i* and *j*, there exists a sequence of edges (*i*, *i*₁), (*i*₁, *i*₂), ..., (*i*_k, *j*), starting with *i* and ending with *j*.

• This property is known as **connectedness**.

• We also assume that if $(i, j) \in E$ then $(j, i) \in E$. This means all communication is bidirectional.

UC San Diego

Definition

A graph is a pair G = (V, E) of sets, called vertices and edges, where $E \subseteq V \times V$.

- ▶ In the distributed context, vertex *i* represents an agent, with its local cost function $f_i : \mathbb{R}^d \to \mathbb{R}$ and local variable $x_i \in \mathbb{R}^d$.
- Edge (i, j) implies that there is a communication line between agents i and j, so agents i and j are able to communicate.
- ► We assume that for any pair of agents *i* and *j*, there exists a sequence of edges (*i*, *i*₁), (*i*₁, *i*₂), ..., (*i*_k, *j*), starting with *i* and ending with *j*.

• This property is known as **connectedness**.

- We also assume that if $(i, j) \in E$ then $(j, i) \in E$. This means all communication is bidirectional.
 - A graph with this property is called **undirected**.

Pranav Reddy

Distributed Gradient Descent

Definition

Let $W \in \mathbb{R}^{N \times N}$ be a weight matrix (compatible with the graph *G*) with $\sigma := \left\| W - \frac{1}{N} \mathbf{1} \mathbf{1}^{\top} \right\|_{2} < 1$. The **decentralized gradient descent method** is

$$x_i(t+1) = \sum_{j=1}^{N} W_{ij} x_j(t) - \eta_t \nabla f_i(x_i(t)), \qquad i = 1, \dots, N \quad (2.1)$$

where $\eta_t > 0$ is the step size. A common variant of the DGD method is the **diffusion method**.

$$x_i(t+1) = \sum_{j=1}^N W_{ij}\left(x_j(t) - \eta_t \nabla f_j(x_j(t))\right), \qquad i = 1, \ldots, N.$$

Notation

We introduce the notation

$$X(t) = egin{bmatrix} x_1(t)^{ op} \ dots \ x_N(t)^{ op} \end{bmatrix} \in \mathbb{R}^{N imes d}.$$

We also define the function $F: \mathbb{R}^{N \times d} \to \mathbb{R}$ defined by

$$F(X) = \sum_{i=1}^{N} f_i(x_i), \text{ where } X = \begin{bmatrix} x_1^\top \\ \vdots \\ x_N^\top \end{bmatrix}.$$

SOC Reading Group Meeting 27 November 2024

Pranav Reddy

Introduction Distributed Gradient Descent Gradient Tracking Conclusion References

Notation II

Note that, since each f_i is assumed to be differentiable, the function F is also differentiable, and its gradient is given by

where $X = \begin{bmatrix} -x_1' \\ \vdots \\ -x_N^\top \end{bmatrix}$.

Pranav Reddy

Notation III

Therefore, the DGD method and the diffusion method can be equivalently written as

$$X(t+1) = WX(t) - \eta_t
abla F(X(t))$$

and

$$X(t+1) = W\bigg(X(t) - \eta_t \nabla F(X(t))\bigg),$$

respectively. We will mainly focus on the original DGD method, but the convergence analysis and results can be adapted to the diffusion method without much difficulty.

Notation IV

We introduce one last piece of notation:

$$\bar{x}(t) = \frac{1}{N} \sum_{k=1}^{N} x_k(t) = \frac{1}{N} (\mathbf{1}^\top X(t))^\top,$$
$$\bar{g}(t) = \frac{1}{N} \sum_{k=1}^{N} \nabla f_i(x_i(t)) = \frac{1}{N} \mathbf{1}^\top \nabla F(X(t)),$$

where $\boldsymbol{1} \in \mathbb{R}^{N}$ is the vector of all 1's. We then define the consensus error as

$$E(t) = \begin{bmatrix} (x_1(t) - \bar{x})^\top \\ \vdots \\ (x_N(t) - \bar{x})^\top \end{bmatrix} = X(t) - \mathbf{1}\bar{x}^\top = \left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^\top\right)X(t).$$

SOC Reading Group Meeting 27 November 2024

Pranav Reddy

Notice that if W is doubly stochastic ($W\mathbf{1} = W^{\top}\mathbf{1} = \mathbf{1}$), then

$$E(t+1) = \left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)X(t+1)$$

= $\left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)\left(WX(t) - \eta_{t}\nabla F(X(t))\right)$
= $\left(W - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)\left(E - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}X(t)\right)$
 $- \eta_{t}\left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)\nabla F(X(t))$
= $\left(W - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)E(t) - \eta_{t}\left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)\nabla F(X(t))$

SOC Reading Group Meeting 27 November 2024

Pranav Reddy

Consensus Error

By denoting

$$\Delta(t) = \left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)\nabla F(X(t)),$$

we directly have

$$\|E(t+1)\|_{\mathsf{F}} \leq \sigma \|E(t)\|_{\mathsf{F}} + \eta_t \|\Delta(t)\|_{\mathsf{F}}.$$

This inequality leads to the following result:

Lemma

Suppose there exists $\delta > 0$ such that $||\Delta(t)|| \le \delta$ for all t. Let $\eta_0 \ge \eta_1 \ge \eta_2 \ge \cdots$ be a sequence of non-increasing step sizes. Then

$$\|E(t)\|_{\mathsf{F}} \leq \sigma^t \|E(0)\|_{\mathsf{F}} + \delta \sum_{\tau=0}^{t-1} \sigma^{t-1-\tau} \eta_{\tau},$$

Convergence of the Consensus Error

Lemma

Suppose there exists $\delta > 0$ such that $||\Delta(t)|| \le \delta$ for all t. Let $\eta_0 \ge \eta_1 \ge \eta_2 \ge \cdots$ be a sequence of non-increasing step sizes. Then

$$\|E(t)\|_F \leq \sigma^t \|E(0)\|_F + \delta \sum_{ au=0}^{t-1} \sigma^{t-1- au} \eta_{ au},$$

It is easy to see that the first term decays to zero, since we assume $\sigma < 1$. The second term is slightly more technical to analyze. We will use a convenient result about sequences and series, a proof can be found online or in many textbooks on the subject.

Pranav Reddy

Stolz-Cesaro Theorem

Theorem (Stolz-Cesaro Theorem)

Let (a_n) and (b_n) be two sequences of real numbers such that:

- 1. (b_n) is strictly monotone and unbounded, i.e., either $b_n \to \infty$ or $b_n \to -\infty$ as $n \to \infty$.
- 2. The limit

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

exists and is finite.

Then:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$

Stolz-Cesaro Theorem

Theorem (Stolz-Cesaro Theorem)

Let (a_n) and (b_n) be two sequences of real numbers such that:

- 1. (b_n) is strictly monotone and unbounded, i.e., either $b_n \to \infty$ or $b_n \to -\infty$ as $n \to \infty$.
- 2. The limit

$$\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}$$

exists and is finite.

Then:

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$

This can be viewed as a discrete version of L'Hopital's rule.

Pranav Reddy

Proof of Convergence

Lemma

Fix two constants $\sigma \in (0,1)$ and $\beta > 0$. We have

$$\lim_{n\to\infty}(1-\sigma)n^{\beta}\sum_{\tau=1}^{n}\frac{\sigma^{n-\tau}}{\tau^{\beta}}=1.$$

Thus, the series $\sum_{\tau=1}^{n} \frac{\sigma^{n-\tau}}{\tau^{\beta}}$ converges to 0 at a rate $\mathcal{O}(n^{-\beta})$ as $n \to \infty$.

Pranav Reddy

Proof of Convergence II

We first write

$$(1-\sigma)n^{\beta}\sum_{\tau=1}^{n}\frac{\sigma^{n-\tau}}{\tau^{\beta}}=\left(\frac{1}{(1-\sigma)n^{\beta}\sigma^{n}}\right)^{-1}\sum_{\tau=1}^{n}\frac{\sigma^{-\tau}}{\tau^{\beta}}.$$

and then define two new sequences

$$a_n = \sum_{\tau=1}^n \frac{\sigma^{-\tau}}{\tau^{\beta}}, \qquad b_n = \frac{1}{(1-\sigma)n^{\beta}\sigma^n}.$$

Since $0 < \sigma < 1$, we know b_n is monotonically increasing and $\lim_{n\to\infty} b_n = \infty$.

Pranav Reddy

Proof of Convergence III

In addition, it is easy to verify that

$$\mathsf{a}_{n+1} - \mathsf{a}_n = rac{\sigma^{-n-1}}{(n+1)^{eta}}$$

and

$$b_{n+1}-b_n=rac{1}{(1-\sigma)(n+1)^eta\sigma^{n+1}}-rac{1}{(1-\sigma)n^eta\sigma^n}\ =rac{n^eta-\sigma(n+1)^eta}{\sigma^{n+1}(1-\sigma)n^eta(n+1)^eta}.$$

Thus, we can verify that

$$egin{aligned} & a_{n+1}-a_n\ b_{n+1}-b_n \ &= rac{rac{\sigma^{-n-1}}{(n+1)^eta}}{rac{n^eta-\sigma(n+1)^eta}{\sigma^{n+1}(1-\sigma)n^eta(n+1)^eta}} = rac{(1-\sigma)n^eta}{n^eta-\sigma(n+1)^eta} o 1. \end{aligned}$$

Pranav Reddy

Proof of Convergence IV

Thus,

$$\frac{a_{n+1}-a_n}{b_{n+1}-b_n}=\frac{\frac{\sigma^{-n-1}}{(n+1)^\beta}}{\frac{n^\beta-\sigma(n+1)^\beta}{\sigma^{n+1}(1-\sigma)n^\beta(n+1)^\beta}}=\frac{(1-\sigma)n^\beta}{n^\beta-\sigma(n+1)^\beta}\to 1.$$

By the Stolz-Cesàro Theorem,

$$\lim_{n\to\infty} = (1-\sigma)n^{\beta}\sum_{\tau=1}^{n}\frac{\sigma^{n-\tau}}{\tau^{\beta}} = \lim_{n\to\infty}a_n/b_n = 1$$

This also proves that $\sum_{\tau=1}^{n} \frac{\sigma^{n-\tau}}{\tau^{\beta}} = \Theta(n^{-\beta}).$

SOC Reading Group Meeting 27 November 2024

Pranav Reddy

Another Useful Bound

Lemma

Suppose there exists $\delta > 0$ such that $||\Delta(t)|| \le \delta$ for all t. Let $\eta_0 \ge \eta_1 \ge \eta_2 \ge \cdots$ be a sequence of non-increasing step sizes. Then

$$\sum_{\tau=0}^{t-1} \eta_{\tau} \| E(\tau) \|_{F}^{2} \leq \frac{2\eta_{0} \| E(0) \|_{F}^{2}}{1 - \sigma^{2}} + \frac{4\delta^{2}}{(1 - \sigma^{2})^{2}} \sum_{\tau=0}^{t-2} \eta_{\tau}^{3}.$$

Pranav Reddy

Proof

By induction, we can derive from the earlier recursion that

$$egin{aligned} \|E(t+1)\|_F^2 &\leq \left(1+rac{1-\sigma^2}{2\sigma^2}
ight)\sigma^2\|E(t)\|_F^2 + \left(1+rac{2\sigma^2}{1-\sigma^2}
ight)\eta_t^2\delta^2 \ &\leq rac{1+\sigma^2}{2}\|E(t)\|_F^2 + rac{2\delta^2}{1-\sigma^2}\eta_t^2, \end{aligned}$$

where we used the inequality

$$\|u+v\|^2 \leq (1+\varepsilon)\|u\|^2 + (1+\varepsilon^{-1})\|v\|^2$$
 for any $\varepsilon > 0.$

Pranav Reddy

Proof II

Consequently,

$$\begin{split} \sum_{\tau=0}^{t-1} \eta_{\tau} \| \mathcal{E}(\tau) \|_{F}^{2} &\leq \sum_{\tau=0}^{t-1} \eta_{\tau} \left(\frac{1+\sigma^{2}}{2} \right)^{\tau} \| \mathcal{E}(0) \|_{F}^{2} \\ &+ \frac{2\delta^{2}}{1-\sigma^{2}} \sum_{\tau=0}^{t-1} \sum_{s=0}^{\tau-1} \left(\frac{1+\sigma^{2}}{2} \right)^{\tau-1-s} \eta_{\tau} \eta_{s}^{2}. \end{split}$$

Now for the first term on the right-hand side, we have

$$egin{aligned} &\sum_{ au=0}^{t-1} \eta_{ au} \left(rac{1+\sigma^2}{2}
ight)^ au \| extsf{E}(0) \|_F^2 &\leq \eta_0 \| extsf{E}(0) \|_F^2 \sum_{ au=0}^{t-1} \left(rac{1+\sigma^2}{2}
ight)^ au \ &\leq rac{2\eta_0 \| extsf{E}(0) \|_F^2}{1-\sigma^2}, \end{aligned}$$

Proof III

To bound the second term, we can interchange the double sum to $\operatorname{\mathsf{get}}$

$$\begin{split} \sum_{\tau=0}^{t-1} \sum_{s=0}^{\tau-1} \left(\frac{1+\sigma^2}{2} \right)^{\tau-1-s} \eta_\tau \eta_s^2 &\leq \sum_{s=0}^{t-2} \eta_s^2 \sum_{\tau=s+1}^{t-1} \left(\frac{1+\sigma^2}{2} \right)^{\tau-1-s} \eta_\tau \\ &\leq \frac{2}{1-\sigma^2} \sum_{s=0}^{t-2} \eta_s^3. \end{split}$$

Therefore,

$$\sum_{\tau=0}^{t-1} \eta_{\tau} \| E(\tau) \|_{F}^{2} \leq \frac{2\eta_{0} \| E(0) \|_{F}^{2}}{1 - \sigma^{2}} + \frac{4\delta^{2}}{(1 - \sigma^{2})^{2}} \sum_{s=0}^{t-2} \eta_{s}^{3}.$$

Pranav Reddy

Notice that

$$\bar{x}(t+1) = \bar{x}(t) - \eta_t \bar{g}(t) \tag{2.2}$$

Since $\bar{g}(t) = \frac{1}{N} \sum_{k=1}^{N} \nabla f_i(x_i(t))$, we expect that if E(t) is small, then the "residual"

$$\bar{g}(t) - \frac{1}{N}\sum_{k=1}^{N}\nabla f_i(\bar{x}(t)) = \frac{1}{N}\sum_{k=1}^{N}\left(\nabla f_i(x_i(t)) - \nabla f_i(\bar{x}(t))\right)$$

should be small.

Pranav Reddy

Notice that

$$\bar{x}(t+1) = \bar{x}(t) - \eta_t \bar{g}(t) \tag{2.2}$$

Since $\bar{g}(t) = \frac{1}{N} \sum_{k=1}^{N} \nabla f_i(x_i(t))$, we expect that if E(t) is small, then the "residual"

$$\bar{g}(t) - \frac{1}{N}\sum_{k=1}^{N}\nabla f_i(\bar{x}(t)) = \frac{1}{N}\sum_{k=1}^{N}\left(\nabla f_i(x_i(t)) - \nabla f_i(\bar{x}(t))\right)$$

should be small.

This inexactness property is common in distributed algorithms

Notice that

$$\bar{x}(t+1) = \bar{x}(t) - \eta_t \bar{g}(t) \tag{2.2}$$

Since $\bar{g}(t) = \frac{1}{N} \sum_{k=1}^{N} \nabla f_i(x_i(t))$, we expect that if E(t) is small, then the "residual"

$$ar{g}(t) - rac{1}{N}\sum_{k=1}^N
abla f_i(ar{x}(t)) = rac{1}{N}\sum_{k=1}^N \left(
abla f_i(x_i(t)) -
abla f_i(ar{x}(t))
ight)$$

should be small.

- This inexactness property is common in distributed algorithms
- We can only estimate the true gradient at x
 (t) via some averaging process.

Proof of Convergence

Note that

$$\begin{split} \|\bar{x}(t) - x^{\star}\|^{2} &= \|\bar{x}(x+1) + \eta_{t}\bar{g}(t) - x^{\star}\|^{2} \\ &= \|\bar{x}(t+1) - x^{\star}\|^{2} + 2\eta_{t}\langle\bar{g}(t), \bar{x}(t+1) - x^{\star}\rangle + \|\eta_{t}\bar{g}(t)\|^{2} \end{split}$$

Thus,

$$\begin{split} \frac{1}{2} \|\bar{x}(t+1) - x^{\star}\|^2 &= \frac{1}{2} \|\bar{x}(t) - x^{\star}\|^2 \\ &- 2\eta_t \langle \bar{g}(t), \bar{x}(t+1) - x^{\star} \rangle - \eta_t^2 \|\bar{g}(t)\|^2 \\ &= \frac{1}{2} \|\bar{x}(t) - x^{\star}\|^2 + \eta_t \langle \bar{g}(t), x^{\star} - \bar{x}(t+1) \rangle \\ &- \frac{1}{2} \|\bar{x}(t+1) - \bar{x}(t)\|^2. \end{split}$$

SOC Reading Group Meeting 27 November 2024

UC San Diego

Proof of Convergence II

We first bound the inner product term. We have

$$\langle ar{g}(t), x^{\star} - ar{x}(t+1)
angle = \langle ar{g}(t), x^{\star} - ar{x}(t)
angle + \langle ar{g}(t), ar{x}(t) - x(t+1)
angle.$$

For the first term, we can apply the definition of $\bar{g}(t)$ and the convexity of each f_i to obtain

$$egin{aligned} &\langle ar{g}(t), x^{\star} - ar{x}(t)
angle &= rac{1}{N} \sum_{i=1}^{N} \langle
abla f_i(x_i(t)), x^{\star} - ar{x}(t)
angle \ &= rac{1}{N} \sum_{i=1}^{N} \langle
abla f_i(x_i(t)), x^{\star} - x_i(t)
angle \ &+ rac{1}{N} \sum_{i=1}^{N} \langle
abla f_i(x_i(t)), x_i(t) - ar{x}(t)
angle \end{aligned}$$

Proof of Convergence III

Continuing,

$$egin{aligned} &\langlear{g}(t),x^{\star}-ar{x}(t)
angle&=rac{1}{N}\sum_{i=1}^{N}\langle
abla f_{i}(x_{i}(t)),x^{\star}-x_{i}(t)
angle\ &+rac{1}{N}\sum_{i=1}^{N}\langle
abla f_{i}(x_{i}(t)),x_{i}(t)-ar{x}(t)
angle\ &\leqrac{1}{N}\sum_{i=1}^{N}(f_{i}(x^{\star})-f_{i}(x_{i}(t)))\ &+rac{1}{N}\sum_{i=1}^{N}\langle
abla f_{i}(x_{i}(t)),x_{i}(t)-ar{x}(t)
angle \end{aligned}$$

SOC Reading Group Meeting 27 November 2024

UC San Diego

Proof of Convergence IV

Thus,

$$egin{aligned} &\langle ar{g}(t), x^{\star} - ar{x}(t)
angle &\leq rac{1}{N} \sum_{i=1}^{N} (f_i(x^{\star}) - f_i(x_i(t))) \ &+ rac{1}{N} \sum_{i=1}^{N} \langle
abla f_i(x_i(t)), x_i(t) - ar{x}(t)
angle \ &\leq f(x^{\star}) - \hat{f}(X(t)), \end{aligned}$$

where

$$\begin{split} \hat{f}(X) &= \frac{1}{N} \sum_{i=1}^{N} \left(f_i(x_i + \langle \nabla f_i(x_i), \bar{x} - x_i \rangle \right) \\ &= \frac{1}{N} \left(F(X) + \operatorname{tr} \left(\nabla F(X) \left(\frac{1}{N} \mathbf{1} \mathbf{1}^\top X - X \right)^\top \right) \right). \end{split}$$

Pranav Reddy

Proof of Convergence V

For the second term, we use the *L*-smoothness of each f_i to obtain

$$egin{aligned} f_i(ar{x}(t+1)) &\leq f_i(x_i(t)) + \langle
abla f_i(x_i(t)), ar{x}(t+1) - x_i(t)
angle \ &+ rac{L}{2} \|ar{x}(t+1) - x_i(t)\|^2 \ &= f_i(x_i(t)) + \langle
abla f_i(x_i(t)), ar{x}(t+1) - ar{x}(t)
angle \ &+ \langle
abla f_i(x_i(t)), ar{x}(t) - x_i(t)
angle + rac{L}{2} \|ar{x}(t+1) - x_i(t)\|^2. \end{aligned}$$

Proof of Convergence VI

Thus,

$$\begin{split} \frac{1}{N} \sum_{i=1}^{N} f_i(\bar{x}(t+1)) &\leq \frac{1}{N} \sum_{i=1}^{N} \left(f_i(x_i(t)) + \langle \nabla f_i(x_i(t)), \bar{x}(t+1) - \bar{x}(t) \rangle \right. \\ &+ \langle \nabla f_i(x_i(t)), \bar{x}(t) - x_i(t) \rangle \\ &+ \frac{L}{2} \| \bar{x}(t+1) - x_i(t) \|^2 \right) \\ &= \hat{f}(X(t)) + \langle \bar{g}(t), \bar{x}(t+1) - \bar{x}(t) \rangle \\ &+ \frac{L}{2N} \sum_{i=1}^{N} \| \bar{x}(t+1) - x_i(t) \|^2 \end{split}$$

SOC Reading Group Meeting 27 November 2024

UC San Diego

Proof of Convergence VII

Using the fact that $||x + y||^2 \le 2||x||^2 + 2||y||^2$.

$$egin{aligned} rac{1}{N}\sum_{i=1}^{N}f_i(ar{x}(t+1))&\leq \hat{f}(X(t))+\langlear{g}(t),ar{x}(t+1)-ar{x}(t)
angle\ &+rac{L}{2N}\sum_{i=1}^{N}\|ar{x}(t+1)-x_i(t)\|^2\ &\leq \hat{f}(X(t))+\langlear{g}(t),ar{x}(t+1)-ar{x}(t)
angle\ &+L\|ar{x}(t+1)-ar{x}(t)\|^2+rac{L}{N}\sum_{i=1}^{N}\|ar{x}(t)-x_i(t)\|^2\ &=\hat{f}(X(t))+\langlear{g}(t),ar{x}(t+1)-ar{x}(t)
angle\ &+L\|ar{x}(t+1)-ar{x}(t)
angle\ &+L\|ar{x}(t+1)-ar{x}(t)\|^2+rac{L}{N}\|E(t)\|_F^2. \end{aligned}$$

Proof of Convergence VIII

Thus, combining the two bounds gives

$$egin{aligned} &\langle ar{g}(t), x^{\star} - ar{x}(t+1)
angle &= \langle ar{g}(t), x^{\star} - ar{x}(t)
angle + \langle ar{g}(t), ar{x}(t) - x(t+1)
angle \ &\leq \left(f(x^{\star}) - \hat{f}(X(t))
ight) \ &+ \left(\hat{f}(X(t)) - f(ar{x}(t+1)) + L \|ar{x}(t+1) - ar{x}(t)\|^2 + rac{L}{N} \|E(t)\|_F^2
ight) \ &= f(x^{\star}) - f(ar{x}(t+1)) + L \|ar{x}(t+1) - ar{x}(t)\|^2 \ &+ rac{L}{N} \|E(t)\|_F^2. \end{aligned}$$

Proof of Convergence IX

Substitution into the original equality gives

$$\begin{split} \eta_t \left(f(\bar{x}(t+1) - f(x^*)) \leq \frac{1}{2} \|\bar{x}(t) - x^*\|^2 \\ &- \frac{1}{2} \|\bar{x}(t+1) - x^*\|^2 - \frac{1}{2} \|\bar{x}(t+1) - \bar{x}(t)\|^2 \\ &+ \eta_t L \|\bar{x}(t+1) - \bar{x}(t)\|^2 + \frac{\eta_t L}{N} \|E(t)\|_F^2. \end{split}$$

Convergence Theorem for DGD

Theorem ([2, Lemma 3.2])

Suppose that f_1, \ldots, f_N are all convex and L-smooth, and there exists $x^* \in \mathbb{R}^d$ such that $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N f_i(x)$. Consider the DGD algorithm Equation (2.1) such that Equation (2.2) holds and $\eta_t > 0$ for all t. Then, we have

$$\frac{\sum_{\tau=1}^{t} \eta_{\tau-1} \left(f(\bar{x}(\tau)) - f(x^{\star}) \right)}{\sum_{\tau=1}^{t} \eta_{\tau-1}} \leq \frac{\|\bar{x}(0) - x^{\star}\|^{2}}{2\sum_{\tau=0}^{t-1} \eta_{\tau}} + \frac{L \sum_{\tau=0}^{t-1} \eta_{\tau} \|E(\tau)\|_{F}^{2}}{N \sum_{\tau=0}^{t-1} \eta_{\tau}} + \frac{\sum_{\tau=0}^{t-1} \eta_{\tau}^{2} (2\eta_{\tau}L - 1) \|\bar{g}(t)\|_{F}^{2}}{2 \sum_{\tau=0}^{t-1} \eta_{\tau}}.$$

SOC Reading Group Meeting 27 November 2024

UC San Diego

Constant Step Size Convergence Rate

Theorem

For simplicity, suppose every agent starts from the same initial point so that $E_0 = 0$. Suppose we choose a constant step size $\eta_t = \eta \leq 1/L$. Then

$$\frac{1}{t}\sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^{\star})\right) \leq \frac{\|\bar{x}(0) - x^{\star}\|^2}{2\eta t} + \frac{2\eta^2 L G^2}{(1 - \sigma^2)^2},$$

and

$$\frac{1}{N}\sum_{i=1}^{N} \|x_i(t) - \bar{x}(t)\|^2 \leq \frac{\eta^2 G^2}{(1-\sigma^2)^2}.$$

Pranav Reddy

Diminishing Step Size Convergence Rate

Theorem

Suppose we choose the step sizes to be $\eta_t = \frac{\alpha}{L(t+1)^{\beta}}$ for some $\alpha \in (0,1)$ and $\beta \in (0,1)$. Then

$$\frac{\sum_{\tau=1}^{t} \eta_{\tau-1}(f(\bar{x}(\tau)) - f(x^{\star}))}{\sum_{\tau=1}^{t} \eta_{\tau-1}} \leq \begin{cases} O\left(\frac{1}{t^{2\beta}}\right), & 0 < \beta < 1/3, \\ O\left(\frac{\ln t}{t^{2/3}}\right), & \beta = 1/3, \\ O\left(\frac{1}{t^{1-\beta}}\right), & 1/3 < \beta < 1, \end{cases}$$

and

$$rac{1}{N}\sum_{i=1}^N \|x_i(t)-ar{x}(t)\|^2 \leq O\left(rac{1}{t^{2eta}}
ight).$$

Pranav Reddy

A natural question is if the Lipschitz continuity of the local cost functions f₁,..., f_N can be relaxed. [1] shows that for DGD (and diffusion) the answer is no:

Counterexample

Let $f_i^{\theta}(x) = \frac{1}{2}(x + (-1)^{i\theta})^2$, so each f_i^{θ} is convex and 1-smooth, but not Lipschitz. Consider the weight matrix $W = \frac{1}{4} \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$, with initial points $x_1(0) = x_2(0) = 0$. Then, we can show that $x_1(t) = -x_2(t) \ge 0$ and

$$x_1(t+1) = \frac{3}{4}x_1(t) - \frac{1}{4}x_2(t) - \eta_t(x_1(t) - \theta) = \left(\frac{1}{2} - \eta_t\right)x_1(t)\eta_t\theta$$

Thus,

$$\frac{1}{2}\left(\|x_1(t)-\bar{x}(t)\|^2+\|x_2(t)-\bar{x}(t)\|^2+\right)\geq \eta_t\theta^2=\frac{\eta_0\theta^2}{(t+1)^{2\beta}}.$$

SOC Reading Group Meeting 27 November 2024

UC San Diego

Distributed Gradient Descent		

► The previous example shows that Lipschitz continuity of the local cost functions f₁,..., f_N is needed to ensure that the consensus error ||E(t)||_F decays fast enough.

- ► The previous example shows that Lipschitz continuity of the local cost functions f₁,..., f_N is needed to ensure that the consensus error ||E(t)||_F decays fast enough.
- ► Also, in general a constant stepsize $\eta_t = \eta$ converges to a neighborhood within $O\left(\frac{\eta^2}{(1-\sigma)^2}\right)$ of the optimal cost

- ► The previous example shows that Lipschitz continuity of the local cost functions f₁,..., f_N is needed to ensure that the consensus error ||E(t)||_F decays fast enough.
- ► Also, in general a constant stepsize $\eta_t = \eta$ converges to a neighborhood within $O\left(\frac{\eta^2}{(1-\sigma)^2}\right)$ of the optimal cost
 - This is partly because the optimal solution is not a fixed point of the DGD update

- ► The previous example shows that Lipschitz continuity of the local cost functions f₁,..., f_N is needed to ensure that the consensus error ||E(t)||_F decays fast enough.
- ► Also, in general a constant stepsize $\eta_t = \eta$ converges to a neighborhood within $O\left(\frac{\eta^2}{(1-\sigma)^2}\right)$ of the optimal cost
 - This is partly because the optimal solution is not a fixed point of the DGD update
- A diminishing sequence of stepsizes does converge, but at an inferior rate.

- ► The previous example shows that Lipschitz continuity of the local cost functions f₁,..., f_N is needed to ensure that the consensus error ||E(t)||_F decays fast enough.
- ► Also, in general a constant stepsize $\eta_t = \eta$ converges to a neighborhood within $O\left(\frac{\eta^2}{(1-\sigma)^2}\right)$ of the optimal cost
 - This is partly because the optimal solution is not a fixed point of the DGD update
- A diminishing sequence of stepsizes does converge, but at an inferior rate.
 - ► The best stepsize, $\beta = \frac{1}{3}$, gives an $O(t^{-2/3} \ln t)$ rate, slower than $O(t^{-1})$ in the centralized case
- [1] showed an $\Omega(t^{-2/3})$ lower bound on the worst-case performance

Motivation

- The main issue with the previous methods is the inexactness of the gradient update.
- ► If each agent knew the true gradient of x
 (t), then we could recover the convergence rate of the centralized case.
- Some issues
 - How do we estimate the gradient more accurately?
 - The O(t⁻¹) convergence rate holds for constant stepsizes, but then the consensus error may not decay fast enough!
- Solution:
 - Add an auxiliary variable to estimate the global gradient
 - Add extra update step to ensure consensus error decays fast enough

Gradient Tracking

Definition

The gradient tracking algorithm is

$$egin{aligned} & x_i(t+1) = \sum_{j=1}^N W_{ij} x_j(t) - \eta g_i(t) \ & g_i(t+1) = \sum_{j=1}^N W_{ij} g_j(t) -
abla f_i(x_i(t+1)) -
abla f_i(x_i(t)). \end{aligned}$$

Pranav Reddy

Gradient Tracking

Definition

The gradient tracking algorithm is

$$egin{aligned} &x_i(t+1) = \sum_{j=1}^N W_{ij} x_j(t) - \eta g_i(t) \ &g_i(t+1) = \sum_{j=1}^N W_{ij} g_j(t) -
abla f_i(x_i(t+1)) -
abla f_i(x_i(t)). \end{aligned}$$

Note that each agent needs to communicate its state variable $x_i(t)$ and the gradient estimate $g_i(t)$ at each time step.

Notation

We introduce the notations

$$ar{x}(t) := rac{1}{N} \sum_{i=1}^{N} x_i(t), \quad ar{g}(t) := rac{1}{N} \sum_{i=1}^{N} g_i(t).$$

We also use $E_x(t)$ and $E_g(t)$ to denote the consensus errors:

$$E_{x}(t) := \begin{bmatrix} (x_{1}(t) - \bar{x}(t))^{\top} \\ \vdots \\ (x_{N}(t) - \bar{x}(t))^{\top} \end{bmatrix} = \left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)X(t),$$
$$E_{g}(t) := \begin{bmatrix} (g_{1}(t) - \bar{g}(t))^{\top} \\ \vdots \\ (g_{N}(t) - \bar{g}(t))^{\top} \end{bmatrix} = \left(I - \frac{1}{N}\mathbf{1}\mathbf{1}^{\top}\right)G(t).$$

SOC Reading Group Meeting 27 November 2024

UC San Diego

Proof Sketch I

The proof is very lengthy and technical, but we cover some highlights:

(1) Show that

$$egin{aligned} E_{\mathsf{x}}(t) &= \left(I - \mathbf{1}\mathbf{1}^{ op}
ight) \mathsf{X}(t) \ E_{\mathsf{x}}(t) &= \left(I - \mathbf{1}\mathbf{1}^{ op}
ight) \mathsf{G}(t) \ ar{\mathsf{x}}(t+1) &= ar{\mathsf{x}}(t) - \eta_t ar{\mathsf{g}}(t) \ \|ar{\mathsf{g}}(t) -
abla f(ar{\mathsf{x}}(t))\| &\leq rac{L}{\sqrt{N}} \|E_{\mathsf{x}}(t)\|_F \end{aligned}$$

SOC Reading Group Meeting 27 November 2024

Pranav Reddy

Proof Sketch II

(2) Using (1), show that

$$\begin{bmatrix} \|E_x(t+1)\|_F\\ \frac{\eta}{2L\sqrt{3}}\|E_g(t+1)\|_F \end{bmatrix} \leq \underbrace{\overbrace{\left[\frac{1+\sigma}{2} \quad \frac{2\eta L\sqrt{3}}{1-\alpha}\right]}^{P(\eta L)}}_{\left[\frac{\eta}{2}\sqrt{3}, \frac{1+\sigma}{2}\right]} \begin{bmatrix} \|E_x(t+1)\|_F\\ \frac{\eta}{2L\sqrt{3}}\|E_g(t+1)\|_F \end{bmatrix}}_{+\frac{\eta^2 LN\sqrt{3}}{2(1-\sigma)}} \begin{bmatrix} 0\\ \|\bar{g}(t)\|^2 \end{bmatrix}$$

(3) Show that
$$\|P(\varepsilon)\| \leq rac{2+\sigma}{3}$$
 for $\varepsilon \in \left(0, rac{(1-\sigma)^2}{25}
ight)$.

Pranav Reddy

Proof Sketch III

(4) Conclude that

$$\sum_{\tau=0}^{t-1} \|E_x(\tau)\|_F^2 \leq \frac{2NE_0^2}{1-\sigma} + \frac{3\eta^3 LN\sqrt{3}}{2(1-\sigma)^2} \sum_{\tau=0}^{t-1} \|\bar{g}(t)\|^2$$

where E_0 is some constant depending only on the initial conditions.

(5) Use the theorem from earlier to conclude that

$$\frac{1}{t}\sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^{\star})\right) \leq \frac{1}{t} \left[\frac{\|\bar{x}(0) - x^{\star}\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)}\right]$$

References

Proof Sketch IV

(6) Show that

$$\sum_{\tau=0}^{t-1} \|\bar{g}(t)\|^2 \leq \frac{5}{2\eta} \left[\frac{\|\bar{x}(0) - x^\star\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)} \right]$$

(6.5) We need to use the general fact that if $\sum_{n=0}^{\infty} a_n < \infty$ then $\min_{0 \le n \le t-1} a_n = o(t^{-1})$.

(7) Conclude using (6) and (6.5) that

$$\min_{\tau=0,...,t-1} \|E_x(\tau)\|_F^2 \le o(t^{-1})$$

Gradient Tracking

Theorem 14

For gradient tracking, we have

$$\frac{1}{t} \sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^*) \right) \le \frac{1}{t} \left[\frac{\|\bar{x}(0) - x^*\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)} \right]$$
$$\min_{\tau=0,\dots,t-1} \|E_x(\tau)\|_F^2 \le o(t^{-1})$$

Pranav Reddy

Theore<u>m</u>

For gradient tracking, we have

$$\frac{1}{t} \sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^{\star}) \right) \le \frac{1}{t} \left[\frac{\|\bar{x}(0) - x^{\star}\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)} \right]$$
$$\min_{\tau=0,...,t-1} \|E_x(\tau)\|_F^2 \le o(t^{-1})$$

 Gradient tracking recovers the centralized convergence rate in the smooth convex case

Theorem

For gradient tracking, we have

$$\frac{1}{t} \sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^{\star}) \right) \leq \frac{1}{t} \left[\frac{\|\bar{x}(0) - x^{\star}\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)} \right]$$
$$\min_{\tau=0,...,t-1} \|E_x(\tau)\|_F^2 \leq o(t^{-1})$$

- Gradient tracking recovers the centralized convergence rate in the smooth convex case
 - Similar results hold in the strongly convex case

Theorem

For gradient tracking, we have

$$\frac{1}{t} \sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^*) \right) \le \frac{1}{t} \left[\frac{\|\bar{x}(0) - x^*\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)} \right]$$
$$\min_{\tau=0,...,t-1} \|E_x(\tau)\|_F^2 \le o(t^{-1})$$

- Gradient tracking recovers the centralized convergence rate in the smooth convex case
 - Similar results hold in the strongly convex case
- Notice the sensitivity to the parameter σ, if σ is close to 1 then the problem is poorly conditioned and gradient tracking may still perform poorly

Theorem

For gradient tracking, we have

$$\frac{1}{t} \sum_{\tau=1}^{t} \left(f(\bar{x}(\tau)) - f(x^*) \right) \le \frac{1}{t} \left[\frac{\|\bar{x}(0) - x^*\|^2}{2\eta} + \frac{3LE_0^2}{2(1-\sigma)} \right]$$
$$\min_{\tau=0,\dots,t-1} \|E_x(\tau)\|_F^2 \le o(t^{-1})$$

- Gradient tracking recovers the centralized convergence rate in the smooth convex case
 - Similar results hold in the strongly convex case
- Notice the sensitivity to the parameter σ, if σ is close to 1 then the problem is poorly conditioned and gradient tracking may still perform poorly
- The technique of constructing an associated linear dynamical system is somewhat common in the literature

Reference

Conclusion

- We have introduced two algorithms for smooth distributed convex optimization
- We discussed the features of each, as well as their convergence rates
- We proved the convergence of one naive algorithm for distributed optimization, as well as discussed its limitations.
- There are much more advanced and preferable algorithms, some of which incorporate addition internal dynamics to offset the negative effects of consensus error on the gradient updates.
- A key takeaway is that distributed first-order algorithms are theoretically similar to inexact first-order methods, where controlling the inexactness is needed to ensuring convergence.

References I

 Jakovetić, D., Xavier, J., and Moura, J. M. F. (2014). Fast distributed gradient methods. *IEEE Transactions on Automatic Control*, 59(5):1131–1146.

[2] Tang, Y. (2024). Fundamentals of distributed optimization.

