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Goals

1. Discuss gradient-based methods for smooth distributed convex
optimization

2. Compare the advantages and disadvantages of different
methods

3. Compare the distributed and centralized settings, and
understand the differences
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Review I

Recall the problem

min
x∈Rd

1
N

N∑
i=1

fi(x)

where f1, . . . , fN are L-smooth, G-Lipschitz convex functions.

We can rewrite this as

min
x1,...,xN∈Rd

1
N

N∑
i=1

fi(xi)

s.t. x1 = x2 = · · · = xN

The error in satisfying the constraint x1 = · · · = xN is called the
consensus error. We usually measure E =

∑N
k=1 ∥xk − x̄∥2

2.
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Review II

Definition
A graph is a pair G = (V , E ) of sets, called vertices and edges,
where E ⊆ V × V .

▶ In the distributed context, vertex i represents an agent, with
its local cost function fi : Rd → R and local variable xi ∈ Rd .

▶ Edge (i , j) implies that there is a communication line between
agents i and j , so agents i and j are able to communicate.

▶ We assume that for any pair of agents i and j , there exists a
sequence of edges (i , i1), (i1, i2), . . . , (ik , j), starting with i and
ending with j .

▶ This property is known as connectedness.

▶ We also assume that if (i , j) ∈ E then (j , i) ∈ E . This means
all communication is bidirectional.

▶ A graph with this property is called undirected.
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Distributed Gradient Descent

Definition
Let W ∈ RN×N be a weight matrix (compatible with the graph G)
with σ :=

∥∥∥W − 1
N 11⊤

∥∥∥
2

< 1. The decentralized gradient
descent method is

xi(t + 1) =
N∑

j=1
Wijxj(t) − ηt∇fi(xi(t)), i = 1, . . . , N (2.1)

where ηt > 0 is the step size. A common variant of the DGD
method is the diffusion method.

xi(t + 1) =
N∑

j=1
Wij

(
xj(t) − ηt∇fj(xj(t))

)
, i = 1, . . . , N.
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Notation

We introduce the notation

X (t) =

x1(t)⊤

...
xN(t)⊤

 ∈ RN×d .

We also define the function F : RN×d → R defined by

F (X ) =
N∑

i=1
fi(xi), where X =

x⊤
1
...

x⊤
N

 .

Pranav Reddy SOC Reading Group Meeting 27 November 2024



8/48

Introduction Distributed Gradient Descent Gradient Tracking Conclusion References

Notation II

Note that, since each fi is assumed to be differentiable, the
function F is also differentiable, and its gradient is given by

∇F (X ) =


∂F (X)
∂X1,1

· · · ∂F (X)
∂X1,d

... . . . ...
∂F (X)
∂XN,1

· · · ∂F (X)
∂XN,d

 =

∇f1(x1)⊤

...
∇fN(xN)⊤

 ,

where X =

−x⊤
1

...
−x⊤

N

 .
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Notation III

Therefore, the DGD method and the diffusion method can be
equivalently written as

X (t + 1) = WX (t) − ηt∇F (X (t))

and

X (t + 1) = W
(

X (t) − ηt∇F (X (t))
)

,

respectively. We will mainly focus on the original DGD method,
but the convergence analysis and results can be adapted to the
diffusion method without much difficulty.
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Notation IV

We introduce one last piece of notation:

x̄(t) = 1
N

N∑
k=1

xk(t) = 1
N (1⊤X (t))⊤,

ḡ(t) = 1
N

N∑
k=1

∇fi(xi(t)) = 1
N 1⊤∇F (X (t)),

where 1 ∈ RN is the vector of all 1’s. We then define the
consensus error as

E (t) =

(x1(t) − x̄)⊤

...
(xN(t) − x̄)⊤

 = X (t) − 1x̄⊤ =
(

I − 1
N 11⊤

)
X (t).
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First Observations

Notice that if W is doubly stochastic (W 1 = W ⊤1 = 1), then

E (t + 1) =
(

I − 1
N 11⊤

)
X (t + 1)

=
(

I − 1
N 11⊤

)(
WX (t) − ηt∇F (X (t))

)

=
(

W − 1
N 11⊤

)(
E − 1

N 11⊤X (t)
)

− ηt

(
I − 1

N 11⊤
)

∇F (X (t))

=
(

W − 1
N 11⊤

)
E (t) − ηt

(
I − 1

N 11⊤
)

∇F (X (t))
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Consensus Error

By denoting
∆(t) =

(
I − 1

N 11⊤
)

∇F (X (t)),

we directly have
∥E (t + 1)∥F ≤ σ∥E (t)∥F + ηt∥∆(t)∥F .

This inequality leads to the following result:

Lemma

Suppose there exists δ > 0 such that ∥∆(t)∥ ≤ δ for all t. Let
η0 ≥ η1 ≥ η2 ≥ · · · be a sequence of non-increasing step sizes.
Then

∥E (t)∥F ≤ σt∥E (0)∥F + δ
t−1∑
τ=0

σt−1−τ ητ ,

Pranav Reddy SOC Reading Group Meeting 27 November 2024
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Convergence of the Consensus Error

Lemma
Suppose there exists δ > 0 such that ∥∆(t)∥ ≤ δ for all t. Let
η0 ≥ η1 ≥ η2 ≥ · · · be a sequence of non-increasing step sizes.
Then

∥E (t)∥F ≤ σt∥E (0)∥F + δ
t−1∑
τ=0

σt−1−τ ητ ,

It is easy to see that the first term decays to zero, since we assume
σ < 1. The second term is slightly more technical to analyze. We
will use a convenient result about sequences and series, a proof can
be found online or in many textbooks on the subject.
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Stolz-Ces̀aro Theorem

Theorem (Stolz-Ces̀aro Theorem)
Let (an) and (bn) be two sequences of real numbers such that:

1. (bn) is strictly monotone and unbounded, i.e., either bn → ∞
or bn → −∞ as n → ∞.

2. The limit
lim

n→∞
an+1 − an
bn+1 − bn

exists and is finite.
Then:

lim
n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

.

This can be viewed as a discrete version of L’Hopital’s rule.
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Proof of Convergence

Lemma

Fix two constants σ ∈ (0, 1) and β > 0. We have

lim
n→∞

(1 − σ)nβ
n∑

τ=1

σn−τ

τβ
= 1.

Thus, the series
∑n

τ=1
σn−τ

τβ converges to 0 at a rate O(n−β) as
n → ∞.
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Proof of Convergence II

We first write

(1 − σ)nβ
n∑

τ=1

σn−τ

τβ
=
( 1

(1 − σ)nβσn

)−1 n∑
τ=1

σ−τ

τβ
.

and then define two new sequences

an =
n∑

τ=1

σ−τ

τβ
, bn = 1

(1 − σ)nβσn .

Since 0 < σ < 1, we know bn is monotonically increasing and
limn→∞ bn = ∞.
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Proof of Convergence III

In addition, it is easy to verify that

an+1 − an = σ−n−1

(n + 1)β

and

bn+1 − bn = 1
(1 − σ)(n + 1)βσn+1 − 1

(1 − σ)nβσn

= nβ − σ(n + 1)β

σn+1(1 − σ)nβ(n + 1)β
.

Thus, we can verify that

an+1 − an
bn+1 − bn

=
σ−n−1

(n+1)β

nβ−σ(n+1)β

σn+1(1−σ)nβ(n+1)β

= (1 − σ)nβ

nβ − σ(n + 1)β
→ 1.
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Proof of Convergence IV

Thus,

an+1 − an
bn+1 − bn

=
σ−n−1

(n+1)β

nβ−σ(n+1)β

σn+1(1−σ)nβ(n+1)β

= (1 − σ)nβ

nβ − σ(n + 1)β
→ 1.

By the Stolz-Cesàro Theorem,

lim
n→∞

= (1 − σ)nβ
n∑

τ=1

σn−τ

τβ
= lim

n→∞
an/bn = 1

This also proves that
∑n

τ=1
σn−τ

τβ = Θ(n−β).
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Another Useful Bound

Lemma
Suppose there exists δ > 0 such that ∥∆(t)∥ ≤ δ for all t. Let
η0 ≥ η1 ≥ η2 ≥ · · · be a sequence of non-increasing step sizes.
Then

t−1∑
τ=0

ητ ∥E (τ)∥2
F ≤ 2η0∥E (0)∥2

F
1 − σ2 + 4δ2

(1 − σ2)2

t−2∑
τ=0

η3
τ .
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Proof

By induction, we can derive from the earlier recursion that

∥E (t + 1)∥2
F ≤

(
1 + 1 − σ2

2σ2

)
σ2∥E (t)∥2

F +
(

1 + 2σ2

1 − σ2

)
η2

t δ2

≤ 1 + σ2

2 ∥E (t)∥2
F + 2δ2

1 − σ2 η2
t ,

where we used the inequality

∥u + v∥2 ≤ (1 + ε)∥u∥2 + (1 + ε−1)∥v∥2

for any ε > 0.
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Proof II

Consequently,

t−1∑
τ=0

ητ ∥E (τ)∥2
F ≤

t−1∑
τ=0

ητ

(
1 + σ2

2

)τ

∥E (0)∥2
F

+ 2δ2

1 − σ2

t−1∑
τ=0

τ−1∑
s=0

(
1 + σ2

2

)τ−1−s

ητ η2
s .

Now for the first term on the right-hand side, we have

t−1∑
τ=0

ητ

(
1 + σ2

2

)τ

∥E (0)∥2
F ≤ η0∥E (0)∥2

F

t−1∑
τ=0

(
1 + σ2

2

)τ

≤ 2η0∥E (0)∥2
F

1 − σ2 ,

Pranav Reddy SOC Reading Group Meeting 27 November 2024



22/48

Introduction Distributed Gradient Descent Gradient Tracking Conclusion References

Proof III

To bound the second term, we can interchange the double sum to
get

t−1∑
τ=0

τ−1∑
s=0

(
1 + σ2

2

)τ−1−s

ητ η2
s ≤

t−2∑
s=0

η2
s

t−1∑
τ=s+1

(
1 + σ2

2

)τ−1−s

ητ

≤ 2
1 − σ2

t−2∑
s=0

η3
s .

Therefore,

t−1∑
τ=0

ητ ∥E (τ)∥2
F ≤ 2η0∥E (0)∥2

F
1 − σ2 + 4δ2

(1 − σ2)2

t−2∑
s=0

η3
s .

Pranav Reddy SOC Reading Group Meeting 27 November 2024



23/48

Introduction Distributed Gradient Descent Gradient Tracking Conclusion References

First Observations

Notice that
x̄(t + 1) = x̄(t) − ηt ḡ(t) (2.2)

Since ḡ(t) = 1
N
∑N

k=1 ∇fi(xi(t)), we expect that if E (t) is small,
then the “residual”

ḡ(t) − 1
N

N∑
k=1

∇fi(x̄(t)) = 1
N

N∑
k=1

(
∇fi(xi(t)) − ∇fi(x̄(t))

)

should be small.

▶ This inexactness property is common in distributed algorithms

▶ We can only estimate the true gradient at x̄(t) via some
averaging process.
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Proof of Convergence

Note that

∥x̄(t) − x⋆∥2 = ∥x̄(x + 1) + ηt ḡ(t) − x⋆∥2

= ∥x̄(t + 1) − x⋆∥2 + 2ηt⟨ḡ(t), x̄(t + 1) − x⋆⟩ + ∥ηt ḡ(t)∥2.

Thus,

1
2∥x̄(t + 1) − x⋆∥2 = 1

2∥x̄(t) − x⋆∥2

− 2ηt⟨ḡ(t), x̄(t + 1) − x⋆⟩ − η2
t ∥ḡ(t)∥2

= 1
2∥x̄(t) − x⋆∥2 + ηt⟨ḡ(t), x⋆ − x̄(t + 1)⟩

− 1
2∥x̄(t + 1) − x̄(t)∥2.
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Proof of Convergence II

We first bound the inner product term. We have
⟨ḡ(t), x⋆ − x̄(t + 1)⟩ = ⟨ḡ(t), x⋆ − x̄(t)⟩ + ⟨ḡ(t), x̄(t) − x(t + 1)⟩.
For the first term, we can apply the definition of ḡ(t) and the
convexity of each fi to obtain

⟨ḡ(t), x⋆ − x̄(t)⟩ = 1
N

N∑
i=1

⟨∇fi(xi(t)), x⋆ − x̄(t)⟩

= 1
N

N∑
i=1

⟨∇fi(xi(t)), x⋆ − xi(t)⟩

+ 1
N

N∑
i=1

⟨∇fi(xi(t)), xi(t) − x̄(t)⟩
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Proof of Convergence III

Continuing,

⟨ḡ(t), x⋆ − x̄(t)⟩ = 1
N

N∑
i=1

⟨∇fi(xi(t)), x⋆ − xi(t)⟩

+ 1
N

N∑
i=1

⟨∇fi(xi(t)), xi(t) − x̄(t)⟩

≤ 1
N

N∑
i=1

(fi(x⋆) − fi(xi(t)))

+ 1
N

N∑
i=1

⟨∇fi(xi(t)), xi(t) − x̄(t)⟩
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Proof of Convergence IV

Thus,

⟨ḡ(t), x⋆ − x̄(t)⟩ ≤ 1
N

N∑
i=1

(fi(x⋆) − fi(xi(t)))

+ 1
N

N∑
i=1

⟨∇fi(xi(t)), xi(t) − x̄(t)⟩

≤ f (x⋆) − f̂ (X (t)),
where

f̂ (X ) = 1
N

N∑
i=1

(fi(xi + ⟨∇fi(xi), x̄ − xi⟩)

= 1
N

(
F (X ) + tr

(
∇F (X )

( 1
N 11⊤X − X

)⊤
))

.
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Proof of Convergence V

For the second term, we use the L-smoothness of each fi to obtain

fi(x̄(t + 1)) ≤ fi(xi(t)) + ⟨∇fi(xi(t)), x̄(t + 1) − xi(t)⟩

+ L
2∥x̄(t + 1) − xi(t)∥2

= fi(xi(t)) + ⟨∇fi(xi(t)), x̄(t + 1) − x̄(t)⟩

+ ⟨∇fi(xi(t)), x̄(t) − xi(t)⟩ + L
2∥x̄(t + 1) − xi(t)∥2.
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Proof of Convergence VI

Thus,

1
N

N∑
i=1

fi(x̄(t + 1)) ≤ 1
N

N∑
i=1

(
fi(xi(t)) + ⟨∇fi(xi(t)), x̄(t + 1) − x̄(t)⟩

+ ⟨∇fi(xi(t)), x̄(t) − xi(t)⟩

+ L
2∥x̄(t + 1) − xi(t)∥2

)
= f̂ (X (t)) + ⟨ḡ(t), x̄(t + 1) − x̄(t)⟩

+ L
2N

N∑
i=1

∥x̄(t + 1) − xi(t)∥2
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Proof of Convergence VII

Using the fact that ∥x + y∥2 ≤ 2∥x∥2 + 2∥y∥2.

1
N

N∑
i=1

fi(x̄(t + 1)) ≤ f̂ (X (t)) + ⟨ḡ(t), x̄(t + 1) − x̄(t)⟩

+ L
2N

N∑
i=1

∥x̄(t + 1) − xi(t)∥2

≤ f̂ (X (t)) + ⟨ḡ(t), x̄(t + 1) − x̄(t)⟩

+ L∥x̄(t + 1) − x̄(t)∥2 + L
N

N∑
i=1

∥x̄(t) − xi(t)∥2

= f̂ (X (t)) + ⟨ḡ(t), x̄(t + 1) − x̄(t)⟩

+ L∥x̄(t + 1) − x̄(t)∥2 + L
N ∥E (t)∥2

F .
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Proof of Convergence VIII

Thus, combining the two bounds gives

⟨ḡ(t), x⋆ − x̄(t + 1)⟩ = ⟨ḡ(t), x⋆ − x̄(t)⟩ + ⟨ḡ(t), x̄(t) − x(t + 1)⟩

≤
(
f (x⋆) − f̂ (X (t))

)
+
(

f̂ (X (t)) − f (x̄(t + 1)) + L∥x̄(t + 1)

− x̄(t)∥2 + L
N ∥E (t)∥2

F

)
= f (x⋆) − f (x̄(t + 1)) + L∥x̄(t + 1) − x̄(t)∥2

+ L
N ∥E (t)∥2

F .
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Proof of Convergence IX

Substitution into the original equality gives

ηt (f (x̄(t + 1) − f (x⋆)) ≤ 1
2∥x̄(t) − x⋆∥2

− 1
2∥x̄(t + 1) − x⋆∥2 − 1

2∥x̄(t + 1) − x̄(t)∥2

+ ηtL∥x̄(t + 1) − x̄(t)∥2 + ηtL
N ∥E (t)∥2

F .
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Convergence Theorem for DGD

Theorem ([2, Lemma 3.2])

Suppose that f1, . . . , fN are all convex and L-smooth, and there
exists x⋆ ∈ Rd such that x⋆ ∈ argminx∈Rd

1
N
∑N

i=1 fi(x). Consider
the DGD algorithm Equation (2.1) such that Equation (2.2) holds
and ηt > 0 for all t. Then, we have∑t

τ=1 ητ−1 (f (x̄(τ)) − f (x⋆))∑t
τ=1 ητ−1

≤ ∥x̄(0) − x⋆∥2

2
∑t−1

τ=0 ητ

+ L
∑t−1

τ=0 ητ ∥E (τ)∥2
F

N
∑t−1

τ=0 ητ

+
∑t−1

τ=0 η2
t (2ητ L − 1)∥ḡ(t)∥2

F
2
∑t−1

τ=0 ητ

.
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Constant Step Size Convergence Rate

Theorem
For simplicity, suppose every agent starts from the same initial
point so that E0 = 0. Suppose we choose a constant step size
ηt = η ≤ 1/L. Then

1
t

t∑
τ=1

(
f (x̄(τ)) − f (x⋆)

)
≤ ∥x̄(0) − x⋆∥2

2ηt + 2η2LG2

(1 − σ2)2 ,

and
1
N

N∑
i=1

∥xi(t) − x̄(t)∥2 ≤ η2G2

(1 − σ2)2 .

Pranav Reddy SOC Reading Group Meeting 27 November 2024



35/48

Introduction Distributed Gradient Descent Gradient Tracking Conclusion References

Diminishing Step Size Convergence Rate

Theorem
Suppose we choose the step sizes to be ηt = α

L(t+1)β for some
α ∈ (0, 1) and β ∈ (0, 1). Then

∑t
τ=1 ητ−1

(
f (x̄(τ)) − f (x⋆)

)∑t
τ=1 ητ−1

≤


O
(

1
t2β

)
, 0 < β < 1/3,

O
(

ln t
t2/3

)
, β = 1/3,

O
(

1
t1−β

)
, 1/3 < β < 1,

and
1
N

N∑
i=1

∥xi(t) − x̄(t)∥2 ≤ O
( 1

t2β

)
.
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Discussion

▶ A natural question is if the Lipschitz continuity of the local
cost functions f1, . . . , fN can be relaxed. [1] shows that for
DGD (and diffusion) the answer is no:
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Counterexample

Let f θ
i (x) = 1

2(x + (−1)iθ)2, so each f θ
i is convex and 1-smooth,

but not Lipschitz. Consider the weight matrix W = 1
4

[
3 1
1 3

]
, with

initial points x1(0) = x2(0) = 0. Then, we can show that
x1(t) = −x2(t) ≥ 0 and

x1(t + 1) = 3
4x1(t) − 1

4x2(t) − ηt(x1(t) − θ) =
(1

2 − ηt

)
x1(t)ηtθ

Thus,

1
2
(
∥x1(t) − x̄(t)∥2 + ∥x2(t) − x̄(t)∥2+

)
≥ ηtθ

2 = η0θ2

(t + 1)2β
.
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Discussion

▶ The previous example shows that Lipschitz continuity of the
local cost functions f1, . . . , fN is needed to ensure that the
consensus error ∥E (t)∥F decays fast enough.

▶ Also, in general a constant stepsize ηt = η converges to a
neighborhood within O

(
η2

(1−σ)2

)
of the optimal cost

▶ This is partly because the optimal solution is not a fixed point
of the DGD update

▶ A diminishing sequence of stepsizes does converge, but at an
inferior rate.

▶ The best stepsize, β = 1
3 , gives an O

(
t−2/3 ln t

)
rate, slower

than O
(
t−1) in the centralized case

▶ [1] showed an Ω(t−2/3) lower bound on the worst-case
performance
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Motivation

▶ The main issue with the previous methods is the inexactness
of the gradient update.

▶ If each agent knew the true gradient of x̄(t), then we could
recover the convergence rate of the centralized case.

▶ Some issues
▶ How do we estimate the gradient more accurately?
▶ The O(t−1) convergence rate holds for constant stepsizes, but

then the consensus error may not decay fast enough!
▶ Solution:

▶ Add an auxiliary variable to estimate the global gradient
▶ Add extra update step to ensure consensus error decays fast

enough
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Gradient Tracking

Definition
The gradient tracking algorithm is

xi(t + 1) =
N∑

j=1
Wijxj(t) − ηgi(t)

gi(t + 1) =
N∑

j=1
Wijgj(t) − ∇fi(xi(t + 1)) − ∇fi(xi(t)).

Note that each agent needs to communicate its state variable xi(t)
and the gradient estimate gi(t) at each time step.
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Notation

We introduce the notations

x̄(t) := 1
N

N∑
i=1

xi(t), ḡ(t) := 1
N

N∑
i=1

gi(t).

We also use Ex (t) and Eg(t) to denote the consensus errors:

Ex (t) :=

(x1(t) − x̄(t))⊤

...
(xN(t) − x̄(t))⊤

 =
(

I − 1
N 11⊤

)
X (t),

Eg(t) :=

(g1(t) − ḡ(t))⊤

...
(gN(t) − ḡ(t))⊤

 =
(

I − 1
N 11⊤

)
G(t).
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Proof Sketch I

The proof is very lengthy and technical, but we cover some
highlights:
(1) Show that

Ex (t) =
(
I − 11⊤

)
X (t)

Ex (t) =
(
I − 11⊤

)
G(t)

x̄(t + 1) = x̄(t) − ηt ḡ(t)

∥ḡ(t) − ∇f (x̄(t))∥ ≤ L√
N

∥Ex (t)∥F
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Proof Sketch II

(2) Using (1), show that

[
∥Ex (t + 1)∥F

η

2L
√

3∥Eg(t + 1)∥F

]
≤

P(ηL)︷ ︸︸ ︷ 1+σ
2

2ηL
√

3
1−α

2ηL
√

3
1−α

1+σ
2

[ ∥Ex (t + 1)∥F
η

2L
√

3∥Eg(t + 1)∥F

]

+ η2LN
√

3
2(1 − σ)

[
0

∥ḡ(t)∥2

]

(3) Show that ∥P(ε)∥ ≤ 2+σ
3 for ε ∈

(
0, (1−σ)2

25

)
.
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Proof Sketch III

(4) Conclude that

t−1∑
τ=0

∥Ex (τ)∥2
F ≤ 2NE 2

0
1 − σ

+ 3η3LN
√

3
2(1 − σ)2

t−1∑
τ=0

∥ḡ(t)∥2

where E0 is some constant depending only on the initial
conditions.

(5) Use the theorem from earlier to conclude that

1
t

t∑
τ=1

(f (x̄(τ)) − f (x⋆)) ≤ 1
t

[
∥x̄(0) − x⋆∥2

2η
+ 3LE 2

0
2(1 − σ)

]
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Proof Sketch IV

(6) Show that

t−1∑
τ=0

∥ḡ(t)∥2 ≤ 5
2η

[
∥x̄(0) − x⋆∥2

2η
+ 3LE 2

0
2(1 − σ)

]

(6.5) We need to use the general fact that if
∑∞

n=0 an < ∞ then
min0≤n≤t−1 an = o(t−1).

(7) Conclude using (6) and (6.5) that

min
τ=0,...,t−1

∥Ex (τ)∥2
F ≤ o(t−1)
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Theorem
For gradient tracking, we have

1
t

t∑
τ=1

(f (x̄(τ)) − f (x⋆)) ≤ 1
t

[
∥x̄(0) − x⋆∥2

2η
+ 3LE 2

0
2(1 − σ)

]
min

τ=0,...,t−1
∥Ex (τ)∥2

F ≤ o(t−1)

▶ Gradient tracking recovers the centralized convergence rate in
the smooth convex case

▶ ▶ Similar results hold in the strongly convex case
▶ Notice the sensitivity to the parameter σ, if σ is close to 1

then the problem is poorly conditioned and gradient tracking
may still perform poorly

▶ The technique of constructing an associated linear dynamical
system is somewhat common in the literature
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Conclusion

▶ We have introduced two algorithms for smooth distributed
convex optimization

▶ We discussed the features of each, as well as their
convergence rates

▶ We proved the convergence of one naive algorithm for
distributed optimization, as well as discussed its limitations.

▶ There are much more advanced and preferable algorithms,
some of which incorporate addition internal dynamics to offset
the negative effects of consensus error on the gradient
updates.

▶ A key takeaway is that distributed first-order algorithms are
theoretically similar to inexact first-order methods, where
controlling the inexactness is needed to ensuring convergence.
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